Join
today

Boliven PRO is more than just patent search

  • Build and save lists using the powerful Lists feature
  • Analyze and download your search results
  • Share patent search results with your clients

Patents »

US6896864: Spatial localization of dispersed single walled carbon nanotubes into useful structures

Share

Filing Information

Inventor(s) Mark S. F. Clarke ·
Assignee(s) Battelle Memorial Institute ·
Attorney/Agent(s) Law Offices of John Gibson Semmes ·
Primary Examiner Stuart L. Hendrickson ·
Assistant Examiner Peter J Lish ·
Application Number US9983830
Filing date 10/26/2001
Issue date 05/24/2005
Prior Publication Data
Predicted expiration date 10/26/2021
U.S. Classifications 423/447.1  · 428/367  · 423/445.R  · 423/447.2  ·
International Classifications --
Kind CodeB2
International Classifications 4234471 · 4234472 · 423445 R · 423461 · 428367 ·
Related U.S. Application DataCROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority from U.S. Provisional Patent Application Ser. No. 60/303,815, entitled “Spatial Localization of Dispersed Single Walled Carbon Nanotubes Into Useful Structures” and filed Jul. 10, 2001. The disclosure of the above-mentioned application is incorporated herein by reference in its entirety.
44 Claims, 7 Drawings


Abstract

Methods of aligning single walled carbon nanotube structures into selected orientations for a variety of different applications are achieved by initially dispersing the nanotube structures in aqueous solutions utilizing a suitable dispersal agent. The dispersal agent coats each individual nanotube structure in solution. The dispersal agent may be substituted with a suitable functional group that reacts with a corresponding binding site. Dispersed nanotube structures coated with substituted dispersal agents are exposed to a selected array of binding sites such that the nanotubes align with the binding sites due to the binding of the substituted functional groups with such binding sites. Alternatively, crystalline nanotube material is formed upon deposition of dispersed nanotube structures within solution into channels disposed on the surface of the substrate. Combining dispersal agent chemical modification techniques with deposition of the nanotubes into substrate channels is also utilized to produce useful structures.

Independent Claims | See all claims (44)

  1. 1. A method of spatially aligning a single walled carbon nanotube in a selected orientation comprising: adhering a dispersal agent to the nanotube, the dispersal agent being selected from the group consisting of octyl-phenoxypolyethoxyethanol, deoxycholates, taurocholic acid, cyclodextrins, chaotropic salts, polyoxyethylene sorbitol esters, poloxamers, sapogenin glycosides, and combinations thereof; securing a reactive group to the dispersal agent adhered to the nanotube; and binding the reactive group to a reactive site secured to a structure to connect the nanotube with the structure.
  2. 12. A method of modifying single walled carbon nanotubes comprising: adhering a dispersal agent to a single walled carbon nanotube, wherein the dispersal agent is effective in dispersing the nanotube from other nanotubes in an aqueous solution and is selected from the group consisting of octyl-phenoxypolyethoxyethanol, deoxycholates, taurocholic acid, cyclodextrins, chaotropic salts, polyoxyethylene sorbitol esters, poloxamers, sapogenin glycosides, and combinations thereof; and securing to the dispersal agent a chemical compound comprising a reactive group, wherein the reactive group is capable of binding with a reactive site secured to a structure upon exposure of the reactive group to the reactive site.
  3. 20. A method of forming a structure of spatially oriented single walled carbon nanotubes comprising: coating the nanotubes with dispersal agent molecules to disperse the nanotubes from each other in an aqueous solution, the dispersal agent molecules being selected from the group consisting of octyl-phenoxypolyethoxyethanol, deoxycholates, taurocholic acid, cyclodextrins, chaotropic salts, polyoxyethylene sorbitol esters, poloxamers, sapogenin glycosides, and combinations thereof; securing reactive groups to the dispersal agent molecules; and securing the nanotubes coated with dispersal agent molecules including reactive groups secured thereto to spatially oriented reactive sites secured to at least one structure via a binding reaction between the reactive sites and the reactive groups.
  4. 33. A method of forming a structure of selectively oriented single walled carbon nanotubes, comprising: forming at least one channel on a substrate; and depositing single walled carbon nanotubes into the at least one channel to form aligned nanotube material along the at least one channel; wherein the nanotubes are coated with dispersal agent molecules to disperse the nanotubes in an aqueous solution, and the dispersal agent molecules are selected from the group consisting of octyl-phenoxypolyethoxyethanol, deoxycholates, taurocholic acid, cyclodextrins, chaotropic salts, polyoxyethylene sorbitol esters, poloxamers, sapogenin glycosides, and combinations thereof.

References Cited

U.S. Patent Documents

Document NumberAssigneesInventorsIssue/Pub Date
US5560898 Director-General of Agency of Industrial Science and Technology Uchida et al. Oct 1996
US5904852 University of South Carolina Tour et al. May 1999
US6187823 University of Kentucky Research Foundation Haddon et al. Feb 2001
US6331262 University of Kentucky Research Foundation Haddon et al. Dec 2001
US6350488 Iljin Nanotech Co., Ltd. Lee et al. Feb 2002
US6368569 University of Kentucky Research Foundation Haddon et al. Apr 2002
US6465132* Agere Systems Guardian Corp. Jin Oct 2002
US6723299 Zyvex Corporation Chen et al. Apr 2004
US20020068170* Smalley et al. Jun 2002
US20020081380 Dillon et al. Jun 2002
US20020092613 Kuper Jul 2002
US20020102193 William Marsh Rice University Smalley et al. Aug 2002
US20020102194 William Marsh Rice University Smalley et al. Aug 2002
US20020127171 William Marsh Rice University Smalley et al. Sep 2002
US20020159944 William Marsh Rice University Smalley et al. Oct 2002
US20020172767 Grigorian et al. Nov 2002
US20030004058 Trustees of Boston College Li et al. Jan 2003
US20030031620 Harutyunyan et al. Feb 2003

Foreign Patent Documents

Document NumberAssigneesInventorsIssue/Pub Date
CN1335257CHENGDU ORGANIC CHEM INSTFeb 2002
EP0949199Horcom LimitedOct 1999
EP1061040Iljin Nanotech Co., Ltd.Dec 2000
EP1092680Iljin Nanotech Co., Ltd.Apr 2001
JP06228824NEC CORPAug 1994
JP08198611NEC CORPAug 1996
JP08231210NEC CORPSep 1996
JP08290908TOYO TANSO KKNov 1996
JP08325007OSAKA PREFECTUREDec 1996
JP09188509NEC CORPJul 1997
JP10120409TOYO TANSO KKMay 1998
KR20010049398ILJINNANOTECH INCJun 2001
KR20010049453ILJINNANOTECH INCJun 2001
KR20010049546ILJINNANOTECH INCJun 2001
RU2085484PETRIK VIKTOR IJul 1997
RU2086503PETRIK VIKTOR IAug 1997
RU2133727INST NEFTEKHIMII I KATALIZA SJul 1999
WO199732571*Sep 1997
WO200061492ROSSETER HOLDINGS LIMITEDOct 2000
WO200116023ULTRATEC LTDMar 2001
WO200157284WILLIAM MARSH RICE UNIVERSITYAug 2001
WO200192381WILLIAM MARSH RICE UNIVERSITYDec 2001
WO2002016257WILLIAM MARSH RICE UNIVERSITYFeb 2002
WO2002060813WILLIAM MARSH RICE UNIVERSITYAug 2002
WO2002076888BEN-GURION UNIVERSITY OF THE NEGEVOct 2002
* cited by examiner

Other Publications

Liu et al. “Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet Chemical Self-Assembling Technique”, Langmuir vol. 16, No. 8, Mar. 24, 2000, pp. 3569-3573.*
Liu et al. “Controlled deposition of individual single-walled carbon nanotubes on chemically functionalized templates” Chemical Physics Letters, vol. 303, Apr. 2, 1999, pp. 125-129.*
Burghard et al. “Controlled Adsorption of Carbon Nanotubes on Chemically Modified Electrode Arrays” Advanced Materials, vol. 10, No. 8, 1998, pp. 584-588.*
Kuo-Yann Lai, Llquid Detergents—surfactant science series vol. 67, 1997, Marcel Dekker Inc., pp. 50-52.*
Krstic et al., Langmuir-Blodgett Films of Matrix-Diluted Single-Walled Carbon Nanotubes, Chem. Mater., vol. 10, pp. 2338-2340, 1998.
A.C. Rinzler, et al.; “Large-scale purification of single-wall carbon nanotubes: process, product, and characterization” Applied Physics A 67, 117 (1998) pp. 29-37.
G.S. Duesberg, et al; “Rapid Communication; Chromatographic size separation of single-wall carbon nanotubes”; Applied Physics A; (1998) pp. 117-119.
Jie Liu, et al.; “Fullerene Pipes”; Science vol. 280; (May 22, 1998); pp. 1253-1256.
Konstantin B. Shelimov, et al.; “Purification of single-wall carbon nanotubes by ultrasonically assisted filtration”; Chemical Physics Letters 282; (1998) pp. 429-434.
Kevin D. Ausman, et al.; “Organic Solvent Dispersions of Single-Walled Carbon Nanotubes: Toward Solutions of Pristine Nanotubes”; American Chemical Society.

Referenced By

Document NumberAssigneeInventorsIssue/Pub Date
US7244407 Zyvex Performance Materials, LLC Jian Chen et al. Jul 2007
US7479516 Zyvex Performance Materials, LLC Jian Chen et al. Jan 2009
US7344691 Zyvek Performance Materials, LLC Jian Chen et al. Mar 2008
US7296576 Zyvex Performance Materials, LLC Hassan Ait-Haddou et al. Nov 2007
US7538400 Nantero, Inc. Brent M. Segal et al. May 2009
US7485279 Yale University Lisa Pfefferle et al. Feb 2009
US7375369 Nantero, Inc. Rahul Sen et al. May 2008
US7547472 Zyvex Performance Materials, Inc. Jian Chen et al. Jun 2009
US7335395 Nantero, Inc. Jonathan W. Ward et al. Feb 2008
US7342818 Nantero, Inc. Brent M. Segal et al. Mar 2008
US7556746 Nantero, Inc. Rahul Sen et al. Jul 2009
US7531892 Yale University Lisa Pfefferle et al. May 2009
US7264990 Nantero, Inc. Thomas Rueckes et al. Sep 2007
US7560136 Nantero, Inc. Jonathan W. Ward et al. Jul 2009
US7544415 Zyvex Performance Materials, Inc. Jian Chen et al. Jun 2009
US7274078 Nantero, Inc. Venkatachalam C. Jaiprakash et al. Sep 2007
US7258807 Yale University Lisa Pfefferle et al. Aug 2007
US7244499 Sanyo Electric Co., Ltd. Yukihiro Sugiyama et al. Jul 2007
US7304357 NANTERO, Inc. Venkatachalam C. Jaiprakash et al. Dec 2007
US7504051 Nantero, Inc. Rahul Sen et al. Mar 2009
US7884450 Yale University Lisa Pfefferle et al. Feb 2011
US7658869 Nantero, Inc. Rahul Sen et al. Feb 2010
US7666382 Nantero, Inc. Eliodor G. Ghenciu et al. Feb 2010
US7745810 Nantero, Inc. Thomas Rueckes et al. Jun 2010
US7780918 Nantero, Inc. Brent M. Segal et al. Aug 2010
US7786540 Nantero, Inc. Brent M. Segal et al. Aug 2010
US7786024 Nanosys, Inc. David P. Stumbo et al. Aug 2010
US7803574 Nanosys, Inc. Tejal Desai et al. Sep 2010
US7850874 Xintek, Inc. Mei Lu et al. Dec 2010
US7858185 Nantero, Inc. Rahul Sen et al. Dec 2010
US7357983 Yale University Lisa Pfefferle et al. Apr 2008
US7241496 Zyvex Performance Materials, LLC. Jian Chen et al. Jul 2007
US7915122 Nantero, Inc. Richard J. Carter et al. Mar 2011
US7976816 William Marsh Rice University Valery N. Khabashesku et al. Jul 2011
US7972616 Nanosys, Inc. Robert S. Dubrow et al. Jul 2011
US7985475 Nanosys, Inc. Robert Dubrow Jul 2011
US8030376 MinusNine Technologies, Inc. David W. Kurz Oct 2011
US8038479 NanoRidge Materials Michael T. Searfass Oct 2011
US8128993 Nantero Inc. Thomas Rueckes et al. Mar 2012
US8216636 Nanyang Technological University Bee Eng Mary Chan et al. Jul 2012
US8147722 Nantero Inc. Rahul Sen et al. Apr 2012
US8187502 Nantero Inc. Rahul Sen et al. May 2012
US8319002 Nanosys, Inc. R. Hugh Daniels et al. Nov 2012
US8304595 Nanosys, Inc. R. Hugh Daniels et al. Nov 2012
US8310015 Nantero Inc. Brent M. Segal et al. Nov 2012
US8535726 --
US8540889 --
US8357559 --
US8366999 --
US8465647 --
US8471238 --
US8574673 --
US8562937 --
US8580586 --
US8628692 --