Join
today

Boliven PRO is more than just patent search

  • Build and save lists using the powerful Lists feature
  • Analyze and download your search results
  • Share patent search results with your clients

Patents »

US7056758: Electromechanical memory array using nanotube ribbons and method for making same

Share

Filing Information

Inventor(s) Brent M. Segal · Darren K. Brock · Thomas Rueckes ·
Assignee(s) Nantero, Inc. ·
Attorney/Agent(s) Wilmer Cutler Pickering Hale and Dorr LLP ·
Primary Examiner W. David Coleman ·
Application Number US10850100
Filing date 05/20/2004
Issue date 06/06/2006
Prior Publication Data
Predicted expiration date 08/01/2021
Patent term adjustment 7
U.S. Classifications 438/50  · 438/742  · 438/52  ·
International Classifications H01L2100  ·
Kind CodeB2
Related U.S. Application DataCROSS-REFERENCE TO RELATED APPLICATIONS
This application is a divisional and claims priority under 35 U.S.C. §121 to U.S. patent application Ser. No. 09/915,093, filed on Jul. 25, 2001, now U.S. Pat. No. 6,919,592, entitled ELECTROMECHANICAL MEMORY ARRAY USING NANOTUBE RIBBONS AND METHOD FOR MAKING SAME.
The following applications are incorporated by reference in their entirety:
U.S. patent application Ser. No. 09/915,095, filed on Jul. 25, 2001, now U.S. Pat. No. 6,574,130, entitled HYBRID CIRCUIT HAVING NANOTUBE ELECTROMECHANICAL MEMORY; and
U.S. patent application Ser. No. 09/915,173, filed on Jul. 25, 2001, now U.S. Pat. No. 6,643,165, entitled ELECTROMECHANICAL MEMORY HAVING CELL SELECTION CIRCUITRY CONSTRUCTED WITH NANOTUBE TECHNOLOGY.
29 Claims, 17 Drawings


Abstract

Electromechanical circuits, such as memory cells, and methods for making same are disclosed. The circuits include a structure having electrically conductive traces and supports extending from a surface of the substrate, and nanotube ribbons suspended by the supports that cross the electrically conductive traces, wherein each ribbon comprises one or more nanotubes. The electro-mechanical circuit elements are made by providing a structure having electrically conductive traces and supports, in which the supports extend from a surface of the substrate. A layer of nanotubes is provided over the supports, and portions of the layer of nanotubes are selectively removed to form ribbons of nanotubes that cross the electrically conductive traces. Each ribbon includes one or more nanotubes.

Independent Claims | See all claims (29)

  1. 1. A method of making electromechanical circuit elements comprising the acts of: providing a structure having electrically conductive traces and supports, the supports extending from a surface of the substrate; providing a layer of nanotubes over the supports; and selectively removing portions of the layer of nanotubes to form ribbons of nanotubes that cross the electrically conductive traces, wherein each ribbon comprises one or more nanotubes.
  2. 24. A method of making a circuit element comprising the acts of: providing a structure having at least one electrically conductive trace in predefined orientation; providing a layer of nanotubes; and selectively removing portions of the layer of nanotubes to form a ribbon of nanotubes that crosses the electrically conductive trace but in a spaced relation thereto.
  3. 27. A method of making a circuit element comprising the acts of: providing a structure having at least one electrically conductive trace in predefined orientation; providing a fabric of nanotubes; and selectively removing portions of the layer of nanotubes according to a predefined pattern to form a ribbon having at least one nanotube such that the ribbon crosses the electrically conductive trace but in a spaced relation thereto.

References Cited

U.S. Patent Documents

Document NumberAssigneesInventorsIssue/Pub Date
US3448302 Shanefield Jun 1969
US3740494 SESCOSEM SOC EUROP SEMICONDUCT Dunand et al. Jun 1973
US3892890 HITACHI LTD Watanabe et al. Jul 1975
US3970887 Micro-Bit Corporation Smith et al. Jul 1976
US4324814 RCA Corporation Reichert Apr 1982
US4378629 Massachusetts Institute of Technology Bozlev et al. Apr 1983
US4495511 The United States of America as represented by the Secretary of the Navy Yoder Jan 1985
US4510016 GTE Laboratories Chi et al. Apr 1985
US4524431 Texas Instruments Incorporated Haken et al. Jun 1985
US4673474 Matsushita Electric Industrial Co., Ltd. Ogawa Jun 1987
US4694427 Kabushiki Kaisha Toshiba Miyamoto et al. Sep 1987
US4701842 International Business Machines Corporation Olnowich Oct 1987
US4707197 American Telephone and Telegraph Company, AT&T Bell Laboratories Hensel et al. Nov 1987
US4758534 Bell Communications Research, Inc. Derkits, Jr. et al. Jul 1988
US4819212 Kabushiki Kaisha Toshiba Nakai et al. Apr 1989
US4845533 Energy Conversion Devices, Inc. Pryor et al. Jul 1989
US4853893 Ramtron Corporation Eaton, Jr. et al. Aug 1989
US4876667 Energy Conversion Devices, Inc. Ross et al. Oct 1989
US4888630 Texas Instruments Incorporated Paterson Dec 1989
US4901121 American Telephone & Telegraph Co., AT&T Bell Labs. Gibson et al. Feb 1990
US4903090 Fujitsu Limited Yokoyama Feb 1990
US4939556 Canon Kabushiki Kaisha Eguchi et al. Jul 1990
US4947226 Hoenywell, Inc. Huang et al. Aug 1990
US4979149 LGZ Landis & Gyr Zug AG Popovic et al. Dec 1990
US4985871 Chips and Technologies, Inc. Catlin Jan 1991
US5010037 California Institute of Technology Lin et al. Apr 1991
US5031145 Hughes Microelectronics Limited Lever Jul 1991
US5032538 Massachusetts Institute of Technology Bozler et al. Jul 1991
US5051956 Hughes Microelectronics Limited Burns Sep 1991
US5057883 Mitsubishi Denki Kabushiki Kaisha Noda Oct 1991
US5089545 Biotech International, Inc. Pol Feb 1992
US5155561 Massachusetts Institute of Technology Bozler et al. Oct 1992
US5161218 Chips and Technologies, Inc. Catlin Nov 1992
US5168070 Forschungszentrum Julich GmbH Luth Dec 1992
US5175597 Thomson-CSF Cachier et al. Dec 1992
US5184320 Texas Instruments Incorporated Dye Feb 1993
US5196396 The President and Fellows of Harvard College Lieber Mar 1993
US5198390 Cornell Research Foundation, Inc. MacDonald et al. Mar 1993
US5198994 Kabushiki Kaisha Toshiba Natori Mar 1993
US5216631 SLIWA JR JOHN W Sliwa Jun 1993
US5252835 President and Trustees of Harvard College Lieber et al. Oct 1993
US5290715 U.S. Philips Corporation Pardya Mar 1994
US5316979 Cornell Research Foundation, Inc. MacDonald et al. May 1994
US5346683 Gas Research Institute Green et al. Sep 1994
US5412785 Motorola, Inc. Skruhak et al. May 1995
US5424054 International Business Machines Corporation Bethune et al. Jun 1995
US5426070 Cornell Research Foundation, Inc. Shaw et al. Jun 1995
US5444421 Racom Systems, Inc. Carroll et al. Aug 1995
US5444651 Sharp Kabushiki Kaisha Yamamoto et al. Aug 1995
US5453970 Rust et al. Sep 1995
US5456986 Carnegie Mellon University Majetich et al. Oct 1995
US5475341 Yale University Reed Dec 1995
US5479172 Racom Systems, Inc. Smith et al. Dec 1995
US5482601 Director-General of Agency of Industrial Science and Technology Ohshima et al. Jan 1996
US5517194 Racom Systems, Inc. Carroll et al. May 1996
US5521602 Racom Systems, Inc. Carroll et al. May 1996
US5533061 Racom Systems, Inc. Smith et al. Jul 1996
US5538916 Mitsubishi Denki Kabushiki Kaisha Kuroi et al. Jul 1996
US5547748 SRI International Ruoff et al. Aug 1996
US5553099 Racom Systems, Inc. Carroll et al. Sep 1996
US5563424 Uniax Corporation Yang et al. Oct 1996
US5586286 Compaq Computer Corporation Santeler et al. Dec 1996
US5589692 Yale University Reed Dec 1996
US5590078 CHATTER MUKESH Chatter Dec 1996
US5592642 Framdrive Thomas Jan 1997
US5592643 Framdrive Thomas Jan 1997
US5592644 Framdrive Thomas Jan 1997
US5608246 Ramtron International Corporation Yeager et al. Mar 1997
US5608888 C-Cube Microsystems, Inc. Purcell et al. Mar 1997
US5623638 Advanced Micro Devices, Inc. Andrade Apr 1997
US5626670 American Research Corporation of Virginia Varshney et al. May 1997
US5626812 NEC Corporation Ebbesen et al. May 1997
US5640133 Cornell Research Foundation, Inc. MacDonald et al. Jun 1997
US5640343 International Business Machines Corporation Gallagher et al. Jun 1997
US5650958 International Business Machines Corporation Gallagher et al. Jul 1997
US5651126 Apple Computer, Inc. Bailey et al. Jul 1997
US5652856 Compaq Computer Corporation Santeler et al. Jul 1997
US5699317 Ramtron International Corporation Sartore et al. Dec 1997
US5716708 Lagow Feb 1998
US5719073 Cornell Research Foundation, Inc. Shaw et al. Feb 1998
US5721862 Ramtron International Corporation Sartore et al. Feb 1998
US5739057 Tiwari et al. Apr 1998
US5747180 University of Notre Dame Du Lac Miller et al. May 1998
US5751156 Yale University Muller et al. May 1998
US5753088 General Motors Corporation Olk May 1998
US5780101 Arizona Board of Regents on behalf of the University of Arizona Nolan et al. Jul 1998
US5781717 I-Cube, Inc. Wu et al. Jul 1998
US5793697 International Business Machines Corporation Scheuerlein Aug 1998
US5799209 Chatter Aug 1998
US5802583 Ramtron International Corporation Yeager et al. Sep 1998
US5838165 Chatter Nov 1998
US5840435 President and Fellows of Harvard College Lieber et al. Nov 1998
US5841692 International Business Machines Corporation Gallagher et al. Nov 1998
US5846849 Cornell Research Foundation, Inc. Shaw et al. Dec 1998
US5847454 Cornell Research Foundcatton, Inc. Shaw et al. Dec 1998
US5847565 Council of Scientific and Industrial Research Narayanan Dec 1998
US5850089 American Research Corporation of Virginia Varshney et al. Dec 1998
US5850231 Casio Computer Co., Ltd. Orimoto et al. Dec 1998
US5858862 Sony Corporation Westwater et al. Jan 1999
US5875451 Enhanced Memory Systems, Inc. Joseph Feb 1999
US5878840 Tessum et al. Mar 1999
US5887272 Enhanced Memory Systems, Inc. Sartore et al. Mar 1999
US5897945 President and Fellows of Harvard College Lieber et al. Apr 1999
US5903010 Hewlett-Packard Company Flory et al. May 1999
US5909624 Ramtron International Corporation Yeager et al. Jun 1999
US5914553 Cornell Research Foundation, Inc. Adams et al. Jun 1999
US5925465 NEC Corporation Ebbesen et al. Jul 1999
US5928450 Russell Jul 1999
US5930164 Motorola, Inc. Zhu Jul 1999
US5939785 Texas Instruments Incorporated Klonis et al. Aug 1999
US5946228 International Business Machines Corporation Abraham et al. Aug 1999
US5946930 Anthony Sep 1999
US5973444 Advanced Technology Materials, Inc. Xu et al. Oct 1999
US5985446 Lagow Nov 1999
US5993697 The Regents of the University of California Cohen et al. Nov 1999
US5994733 Mitsubishi Denki Kabushiki Kaisha Nishioka et al. Nov 1999
US5997832 President and Fellows of Harvard College Lieber et al. Dec 1999
US6025618 Chen Feb 2000
US6031711 Hyperion Catalysis International, Inc. Tennent et al. Feb 2000
US6031756 International Business Machines Corporation Gimzewski et al. Feb 2000
US6036774 President and Fellows of Harvard College Lieber et al. Mar 2000
US6038060 Crowley Mar 2000
US6038637 Nortel Networks Corporation Berube et al. Mar 2000
US6044008 Hyundai Electronics Industries Co., Ltd. Choi Mar 2000
US6048740 Sharp Laboratories of America, Inc. Hsu et al. Apr 2000
US6049856 Unisys Corporation Bolyn Apr 2000
US6051866 Cornell Research Foundation, Inc. Shaw et al. Apr 2000
US6052263 International Business Machines Corporation Gill Apr 2000
US6052313 Kabushiki Kaisha Toshiba Atsumi et al. Apr 2000
US6060724 Hewlett-Packard Company Flory et al. May 2000
US6062931 Industrial Technology Research Institute Chuang et al. May 2000
US6063243 The Regents of the Univeristy of California Zettl et al. May 2000
US6064107 United Microelectronics Corp. Yeh et al. May 2000
US6069380 Regents of the University of Minnesota Chou et al. May 2000
US6072718 International Business Machines Corporation Abraham et al. Jun 2000
US6083624 NEC Corporation Hiura Jul 2000
US6087293 The Dow Chemical Company Carnahan et al. Jul 2000
US6088760 Mitsubishi Semiconductor America, Inc. Walker et al. Jul 2000
US6100109 Siemens Aktiengesellschaft Melzner et al. Aug 2000
US6104633 International Business Machines Corporation Abraham et al. Aug 2000
US6105381 International Business Machines Corporation Ghoshal Aug 2000
US6108725 Chatter Aug 2000
US6128214 Hewlett-Packard Kuekes et al. Oct 2000
US6136160 IMS Ionen-Mikrofabrikations Systeme GmbH Hrkut et al. Oct 2000
US6138219 Nexabit Networks LLC Soman et al. Oct 2000
US6144481 Eastman Kodak Company Kowarz et al. Nov 2000
US6146227 Xidex Corporation Mancevski Nov 2000
US6156256 Applied Sciences, Inc. Kennel Dec 2000
US6159620 The Regents of the University of California Heath et al. Dec 2000
US6159742 President and Fellows of Harvard College Lieber et al. Dec 2000
US6165890 Georgia Tech Research Corporation Kohl et al. Dec 2000
US6166948 International Business Machines Corporation Parkin et al. Dec 2000
US6177703 VLSI Technology, Inc. Cunningham Jan 2001
US6183714 Rice University Smalley et al. Feb 2001
US6187823 University of Kentucky Research Foundation Haddon et al. Feb 2001
US6190634 President and Fellows of Harvard College Lieber et al. Feb 2001
US6198655 The Regents of the University of California Heath et al. Mar 2001
US6203814 Hyperion Catalysis International, Inc. Fisher et al. Mar 2001
US6203864 NEC Corporation Zhang et al. Mar 2001
US6212597 NeoNet LLLC Conlin et al. Apr 2001
US6219212 International Business Machines Corporation Gill et al. Apr 2001
US6221330 Hyperion Catalysis International Inc. Moy et al. Apr 2001
US6226722 International Business Machines Corporation Shippy et al. May 2001
US6231744 Massachusetts Institute of Technology Ying et al. May 2001
US6231980 The Regents of the University of California Cohen et al. May 2001
US6232706 The Board of Trustees of the Leland Stanford Junior University Dai et al. May 2001
US6233665 Unisys Corporation Bolyn May 2001
US6237130 Nexabit Networks, Inc. Soman et al. May 2001
US6239547 Ise Electronics Corporation Uemura et al. May 2001
US6250984 Agere Systems Guardian Corp. Jin et al. Jun 2001
US6256767 Hewlett-Packard Company Kuekes et al. Jul 2001
US6259277 University of South Carolina Tour et al. Jul 2001
US6262469 Advanced Micro Devices, Inc. Le et al. Jul 2001
US6277318 Agere Systems Guardian Corp. Bower Aug 2001
US6300205 Advanced Micro Devices, Inc. Fulford et al. Oct 2001
US6314019 Hewlett-Packard Company Kuekes et al. Nov 2001
US6320428 Kabushiki Kaisha Toshiba Atsumi et al. Nov 2001
US6322713 Agere Systems Guardian Corp. Choi et al. Nov 2001
US6325909 The Governing Council of The University of Toronto Li et al. Dec 2001
US6331209 Jin Jang Jang et al. Dec 2001
US6333016 The Board of Regents of the University of Oklahoma Resasco et al. Dec 2001
US6346413 Affymetrix, Inc. Fodor et al. Feb 2002
US6348295 Massachusetts Institute of Technology Griffith et al. Feb 2002
US6348700 The Mitre Corporation Ellenbogen et al. Feb 2002
US6350488 Iljin Nanotech Co., Ltd. Lee et al. Feb 2002
US6354133 Advanced Micro Devices, Inc. Yedur et al. Mar 2002
US6358756 Micron Technology, Inc. Sandhu et al. Mar 2002
US6361861 Battelle Memorial Institute Gao et al. Mar 2002
US6362073 Hyundai Electronics Industries Co., Ltd. Kim Mar 2002
US6380434 Chiang Apr 2002
US6400088 TRW Inc. Livingston et al. Jun 2002
US6400091 Matsushita Electric Industrial Co., Ltd. Deguchi et al. Jun 2002
US6406776 General Electric Company D'Evelyn Jun 2002
US6407443 Hewlett-Packard Company Chen et al. Jun 2002
US6413487 The Board of Regents of the University of Oklahoma Resasco et al. Jul 2002
US6417606 Kabushiki Kaisha Toshiba Nakamoto et al. Jul 2002
US6420726 Samsung SDI Co., Ltd. Choi et al. Jul 2002
US6421271 Infineon Technologies AG Gogl et al. Jul 2002
US6422450 University of North Carolina, The Chapel Zhou et al. Jul 2002
US6423583 International Business Machines Corporation Avouris et al. Jul 2002
US6426134 E. I. du Pont de Nemours and Company Lavin et al. Jul 2002
US6432740 Hewlett-Packard Company Chen Aug 2002
US6443901 Koninklijke Philips Electronics N.V. Fraser Sep 2002
US6445006 Advanced Technology Materials, Inc. Brandes et al. Sep 2002
US6495116 Lockheed Martin Corporation Herman Dec 2002
US6495258 Auburn University Chen et al. Dec 2002
US6515339 LG Electronics Inc. Shin et al. Feb 2003
US6518156 Hewlett-Packard Company Chen et al. Feb 2003
US6541309 Hewlett-Packard Development Company LP Chen Apr 2003
US6548841 Texas Instruments Incorporated Frazier et al. Apr 2003
US6566983 LG Electronics Inc. Shin May 2003
US6574130 Nantero, Inc. Segal et al. Jun 2003
US6586965 Hewlett Packard Development Company LP Kuekes Jul 2003
US6611033 IBM Corporation Hsu et al. Aug 2003
US6643165 Nantero, Inc. Segal et al. Nov 2003
US6706402 Nantero, Inc. Rueckes et al. Mar 2004
US6784028 Nantero, Inc. Rueckes et al. Aug 2004
US6803840 California Institute of Technology Hunt et al. Oct 2004
US6809465 Samsung Electronics Co., Ltd. Jin Oct 2004
US20010004979 LG Electronics Inc. Han et al. Jun 2001
US20010023123 Kim Sep 2001
US20010023986 Mancevski Sep 2001
US20020055010 Gao et al. May 2002
US20020061441 Ogura et al. May 2002
US20020068170 Smalley et al. Jun 2002
US20020081380 Dillon et al. Jun 2002
US20020081787 Kohl et al. Jun 2002
US20020088938 William Marsh Rice University Colbert et al. Jul 2002
US20020090331 William Marsh Rice University Smalley et al. Jul 2002
US20020092983 William Marsh Rice University Colbert et al. Jul 2002
US20020092984 William Marsh Rice University Colbert et al. Jul 2002
US20020096634 William Marsh Rice University Colbert et al. Jul 2002
US20020098135 William Marsh Rice University Smalley et al. Jul 2002
US20020102193 William Marsh Rice University Smalley et al. Aug 2002
US20020102194 William Marsh Rice University Smalley et al. Aug 2002
US20020102196 William Marsh Rice University Smalley et al. Aug 2002
US20020102353 ELECTROVAC, FABRIKATION ELECTROTECHNISCHER SPEZIALARTIKEL GESELLSCHAFT M.B.H. Mauthner et al. Aug 2002
US20020112814 Hafner et al. Aug 2002
US20020125805 Hsu Sep 2002
US20020130353 Lieber et al. Sep 2002
US20020160111 Sun et al. Oct 2002
US20020172639 FUJI XEROX CO., LTD. Horiuchi Nov 2002
US20020173083 International Business Machines Corporation Avouris et al. Nov 2002
US20020175323 Guillom et al. Nov 2002
US20020175390 Goldstein et al. Nov 2002
US20020179434 The Board of Trustees of the Leland Stanford Junior University Dai et al. Dec 2002
US20030004058 Trustees of Boston College Li et al. Jan 2003
US20030021966 Segal et al. Jan 2003
US20030108480 Baker et al. Jun 2003
US20030124325 Rueckes et al. Jul 2003
US20030124837 Rueckes et al. Jul 2003
US20030165074 Nantero, Inc. Segal et al. Sep 2003
US20030199172 Rueckes et al. Oct 2003
US20040085805 Nantero, Inc. Segal et al. May 2004
US20040159833 Nantero, Inc. Rueckes et al. Aug 2004
US20040175856 Nantero, Inc. Jaiprakash et al. Sep 2004
US20040181630 Nantero, Inc. Jaiprakash et al. Sep 2004

Foreign Patent Documents

Document NumberAssigneesInventorsIssue/Pub Date
EP0217023International Business MachinesApr 1987
EP0296716ENERGY CONVERSION DEVICES, INC.May 1988
EP0269225ENERGY CONVERSION DEVICES, INC.Jun 1988
EP0269225ENERGY CONVERSION DEVICES, INC.Jun 1988
EP441409Jul 1988
EP441409Jul 1988
EP0296716ENERGY CONVERSION DEVICES, INC.Dec 1988
EP0315392ENERGY CONVERSION DEVICES, INC.May 1989
EP0315392ENERGY CONVERSION DEVICES, INC.May 1989
EP426282Aug 1990
EP0613130NEC CORPORATIONAug 1994
EP0665187DIRECTOR-GENERAL OF THE AGENCY OFAug 1995
EP0688618IMR S.r.l.Dec 1995
EP0688618IMR S.r.l.Dec 1995
EP758028Jul 1996
EP1209123WILLIAM MARSH RICE UNIVERSITYSep 1996
EP0665187DIRECTOR-GENERAL OF THE AGENCY OFDec 1997
EP0989579LUCENT TECHNOLOGIES INC.Mar 2000
EP0948402W.R. GRACE & CO.-CONN.Sep 2000
EP1046613Jin JangOct 2000
EP1225613MATSUSHITA ELECTRIC INDUSTRIAL CO., LTD.Oct 2000
EP1052520HITACHI EUROPE LIMITEDNov 2000
EP1054249Daiken Chemical Co. Ltd.Nov 2000
EP1059266Iljin Nanotech Co., Ltd.Dec 2000
EP1061040Iljin Nanotech Co., Ltd.Dec 2000
EP1061043Iljin Nanotech Co., Ltd.Dec 2000
EP1061044Institute of Metal Research of the Chinese Academy of SciencesDec 2000
EP1061544Iljin Nanotech Co., Ltd.Dec 2000
EP1061555Iljin Nanotech Co., Ltd.Dec 2000
EP1069206LUCENT TECHNOLOGIES INC.Jan 2001
EP1072693Iljin Nanotech Co., Ltd.Jan 2001
EP1132920Hewlett-Packard CompanyFeb 2001
EP1096533LUCENT TECHNOLOGIES INC.May 2001
EP1100106LUCENT TECHNOLOGIES INC.May 2001
EP1205436International Business Machines CorporationNov 2001
GB2364933LG ELECTRONICS INCJul 2001
JP11011917CANON INCJan 1999
WO199502709Jan 1995
WO199502709Jan 1995
WO199638410Dec 1996
WO199641043Dec 1996
WO199722971Dec 1996
WO199709272Mar 1997
WO199731139Aug 1997
WO199743473Nov 1997
WO199839250Sep 1998
WO199839251Sep 1998
WO199842620Oct 1998
WO199848456Oct 1998
WO199906618Feb 1999
WO200009443THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITYJul 1999
WO200008650MOTOROLA, INC.Aug 1999
WO199947570Sep 1999
WO199948810Sep 1999
WO199958748Nov 1999
WO199965821THE RESEARCH FOUNDATION OF STATE UNIVERSITY OF NEW YORKDec 1999
WO200009443THE BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITYFeb 2000
WO200017101WILLIAM MARSH RICE UNIVERSITYMar 2000
WO200019494XIDEX CORPORATIONApr 2000
WO200063115COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATIONApr 2000
WO200073204COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATIONMay 2000
WO200044094UNIVERSITY OF SOUTH CAROLINAJul 2000
WO200048195BOARD OF TRUSTEES OPERATING MICHIGAN STATE UNIVERSITYAug 2000
WO200118246THE TRUSTEES OF PRINCETON UNIVERSITYAug 2000
WO200063115COMMONWEALTH SCIENTIFIC AND INDUSTRIAL RESEARCH ORGANISATIONOct 2000
WO200242204LOCKHEED MARTIN CORPORATIONNov 2000
WO200103208PRESIDENT AND FELLOWS OF HARVARD COLLEGEJan 2001
WO200237500THE REGENTS OF THE UNIVERSITY OF CALIFORNIAMay 2001
WO200144796BOARD OF TRUSTEES OF THE LELAND STANFORD JUNIOR UNIVERSITYJun 2001
WO200219420GEORGIA TECH RESEARCH CORPORATIONAug 2001
WO200238496INTERNATIONAL BUSINESS MACHINES CORPORATIONNov 2001
WO200248701PRESIDENT AND FELLOWS OF HARVARD COLLEGEDec 2001
WO200248822Yaron MAYERDec 2001
WO2002054505INTERNATIONAL BUSINESS MACHINES CORPORATIONDec 2001
WO2002059898INFINEON TECHNOLOGIES AGJan 2002
WO2002060812WILLIAM MARSH RICE UNIVERSITYJan 2002
WO2002060813WILLIAM MARSH RICE UNIVERSITYJan 2002
WO2003091486NANTERO, INC.Nov 2003
WO2004065655NANTERO, INC.Aug 2004
WO2004065657NANTERO, INC.Aug 2004
WO2004065671NANTERO, INC.Aug 2004

Other Publications

Winslow, Troy. “Advanced+ Boot Block World's First 0.18-Micron Flash Memory.” Flash Products Group. Apr. 17, 2000.
“Double Sided 4Mb SRAM Coupled Cap PBGA Card Assembly Guide.” International Business Machines Corp. (IBM), 1998.
Tyagi et al. “A 130nm Generation Logic Technology Featuring 70nm Transistors, Dual Vt Transistors and 6 Layers of Cu Interconnects.” Portland Technology Development.
“Preliminary: 8Mb (256K×36 & 512K×18) and 4Mb (128K×36 & 256K×18) [IBM0418A8CBLBB, IBM0418A4CBLBB, IBM0436A8CBLBB, IBM0436A4CBLBB]. ” International Business Machines Corp. (IBM), 1998.
Wei, Chengyu et al. “Temperature and Stain-Rate Dependent Plastic Deformation of Carbon Nanotube.”.
“Package Mechanicals for USAR ICs.” USAR Systems, Inc., 1998.
Dipert, Brian. “Exotic Memories, Diverse Approaches.” EDN Magazine. Apr. 26, 2001, 56-70.
Duan, Xiangfeng. “Indium Phosphide Nanowires as Building Blocks for Nanoscale Electronic and Optoelectronic Devices.” Nature (2001); 409: 66-69.
Yang. “A High Performance 180 nm Generation Logic Technology.” Portland Technology Development.
Dai, Hongjie. “Controlled Chemical Routes to Nanotube Architectures, Physics, and Devices.” The Journal of Physical Chemistry B (1999); 103: 11246-11255.
Callaby, D. Roy et al. “Solid State Memory Study Final Report.” National Media Lab, Feb. 1994.
Cui, Yi. “Doping and Electrical Transport in Silicon Nanowires.” The Journal of Physical Chemistry B (2000); vol. 104, No. 22: 5213-5216.
Li, Mingtao et al. “Direct Three-dimensional Patterning Using Nanoimprint Lithography.” Applied Physics Letters (2000); vol. 78, No. 21: 3322-3324.
“8 Mb Synchronous Communication SRAM (IBM0418A86LQKA, IBM0418A86SQKA, IBM0436A86IQKA, IBM436A86SQKA).” International Business Machines Corp. (IBM), 1999.
Dipert, Brian. “Memory Cards: Designing with a Full Deck.” EDN Magazine. May 25, 2000.
Schönenberger, Christian et al. “Physics of Multiwall Carbon Nanotubes.” Physics World. Apr. 4, 2000.
Whatmore, Roger W. “Nanotechnology.” Ingenia. Feb. 2000.
“Nanochip NC800SX, 0.8 Gbyte Molecular Memory IC (R/W), Nanochip NC200SX, 0.2 Gbyte Molecular Memory IC (R/W), Nanochip NCM4510SX, Molecular Array Read/write Engine, Low Voltage Thermal Actuated, Dynamic Media Series M2, Nanochip Nanochip NC4525DX, A/D-D/A Interface, Preliminary Specifications, Advance Information, (C) 1996-2000 Nanochip Document NCM2230500.”.
Odom, Teri Wang et al. “Atomic Structure and Electronic Properties of Single-Walled Carbon Nanotubes.” Nature (1998); 391: 62-64.
Ouyang, Min. “Atomically Resolved Single-Walled Carbon Nanotube Intramolecular Junctions.” Science (2001); 291: 97-100.
Odom, Teri Wang et al. “Magnetic Clusters on Single-Walled Carbon Nanotubes: The Kondo Effect in a One-Dimensional Host.” Science (2000); 290: 1549-1552.
Wong, Eric et al. “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes.” Science (1997); 277: 1971-1975.
Hu, Jiangtao et al. “Controlled Growth and Electrical Properties of Heterojunctions of Carbon Nanotubes and Silicon Nanowires.” Nature (1999); 399: 48-51.
Rueckes, Thomas et al. “Carbon Nanotube-Based Nonvolatile Random Access Memory for Molecular Computing.” Science (2000); 289: 94-7.
Kim, Philip et al. “Nanotube Nanotweezers.” Science (1999); 286: 2148-2150.
Huang, Yu et al. “Directed Assembly of One-Dimensional Nanostructures into Functional Networks.” Science (2001); 291: 630-33.
Cui, Yi et al. “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks.” Science (2001); 291: 851-53.
Oullette, Jennifer. “Exploiting Molecular Self-Assembly.” The Industrial Physicist. American Institute of Physics, Dec. 2000.
Peng, Shu et al. “Chemical Control of Nanotube Electronics.” Nanotechnology (2000); 11: 57-60.
“The Ultimate Memory Guide.” Kingston Technology (1998).
Morales, Alfredo et al. “A Laser Ablation Method for the Synthesis of Crystalline Semiconductor Nanowires.” Science (1998); 279: 208-11.
Franklin, Nathan R. and Hongjie Dai, “An Enhanced CVD Approach to Extensive Nanotube Networks with Directionality.” Advanced Materials (2000): 890-894.
Kong, Jing; Chongwu Zhou; Erhan Yenilmez; Hongjie Dai. “Alkaline metal-doped n-type semiconducting nanotubes as quantum dots.” ApplieDPhysics Letters (Dec. 11, 2000): 3977-3979.
Tombler, Thomas W.; Chongwu Zhou; Jing Kong; Hongjie Dai. “Gating invidual nanotubes and crossed with scanning probes.” Applied Physics Letters (Apr. 24, 2000): 2412-2414.
Zhou, Chongwu: et al. “Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters.” Applied Physics Letters (Mar. 20, 2000): 1597-1599.
Zhang, Y. and Hongjie Dai. “Formation of metal nanowires on suspended single-walled carbon nanotubes.” Applied Physics Letters (Nov. 6, 2000): 3015-3017.
Chen, Robert J. et al. “Molecular photodesorption from single-walled carbon nanotubes.” Applied Physics Letters (Oct. 1, 2001): 2258-2260.
Zhang, Y.et al. “Electric-field-directed growth of a aligned single-walled carbon nanotubes.” Applied Physics Letters (Nov. 5, 2001): 3155-3157.
Zhang, Y. et al. “Metal coating on suspended carbon nanotubes and its implication to metal-tube interaction.” Chemical Physics Letters (Nov. 24, 2000): 35-41.
Chen, Robert J. et al. “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization.” American Chemical Society (2001): 3838-3839.
Li, Yiming et al. “Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes.” American Chemical Society (2001).
Cassell, Alan M. et al. “Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes.” American Chemical Society (1999): 6484-6492.
Fan, Shoushan et al. “Carbon nanotube arrays on silicon substrates and their possible application.” Physica Ε(2000): 179-183.
Liu, Lei et al. “Controllable Reversibility of an sp2 to sp3 Transition of a single Wall Nanotube under the Manipulation of an AFM Tip.” Physical Review Letters (May 22, 2000): 4950-4953.
Kong, Jing et al. “Quantum Interference and Ballistic Transmission in Nanotube Electron Waveguides.” Physical Review Letters (Sep. 3, 2001); 87, 106801(4).
Liu, C. et al. “Synthesis of Macroscopically Long Ropes of Well-Aligned Single-Walled Carbon Nanotubes.” Advanced Materials (Aug. 16, 2000); 12, 1190-1192.
Kiang, Ching-Hwa. “Growth of Large-Diameter Single-Walled Carbon Nanotubes.” American Chemical Society (2000); 104, 2454-2456.
Cheung. Chin Li et al. “Growth and fabrication with single-walled carbon nanotube probe microscopy tips.” Applied Physics Letters (2000); 76, 3136-3138.
Bozovic, Dolores et al. “Electronics properties of mechanically induced kinds on single-walled carbon nanotubes.” Applied Physics Letters (Jun. 4, 2001); 78, 3693-3695.
Hafner, Jason H. et al. “High-Yield Assembly of Individual Single-Walled Carbon Nanotube Tips for Scanning Prone Microscopies.” The Journal of Physical Chemistry (Feb. 1, 2001); 105, 743-746.
Hafner, J.H. et al. “Structual and functional imaging with carbon nanotube AFM probes.” Progress in Biophysics & Molecular Biology (2001); 77, 73-110.
Jorio, A. et al. “Joint density of electronic states for one isolated single-wall carbon nanotube studies by resonant Raman scattering.” Physical Review B (2001); 63: 24541(4).
Filho, A. G. Souza et al. “Electronic transition energy Eii for an isolated (n,m) single-wall carbon nanotube obtained by anti-Stokes/Stokes resonant Raman intensity ratio.” Physical Review (2002); 63, 241404(4).
Saito, R. et al. “Chirality-dependent G-band Raman intensity of carbon nanotubes.” Physical Review (2001); 64, 085312(7).
Jorio, A. et al. “Structural (n, m) Determination of Isolated Single-Wall Carbon Nanotubes by Resonant Raman Scattering.” Physics Review Letters (Feb. 5, 2001); 86, 1118-1121.
Woolley, Adam T. et al. “Structual biology with carbon nanotube AFM probes.” Chemistry & Biology (2000); 7, R193-204.
Li, Yan et al. “Preparation of Monodispersed Fe-Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubues.” Chemical Material (2001): 13; 1008-1014.
Rao, C. N. R. et al. “Nanotubes.” CHEMPHYCHEM (2001); 2, 78-105.
Nerushev, Oleg A. et al. “Carbon nanotube films obtained by thermal chemical vapor deposition.” Journal of Chemistry Materials (2001); 11, 1122-1132.
Flahaut, E. et al. “Synthesis of single-walled carbon nanotube-Co-MgO composite powders and extraction of the nanotubes.” Journal of Chemical Materials (2000); 10, 249-252.
Dresselhaus, Mildred S. and Phaedon Avouris. “Introduction to Carbon Materials Research.” Topics Applied Physics (2001); 80, 1-9.
Dresselhaus, Mildred S. and Morinobu Endo. “Relation of Carbon Nanotubes to Other Carbon Materials.” Topics in Applied Physics (2001); 80, 11-28.
Dai, Hongjie. “Nanotube Growth and Characterization.” Topics in Applied Physics (2001); 80, 29-53.
Charlier, Jean-Chrisophe and Sumio Iijima. “Growth Mechanisms of Carbon Nanotubes.” Topics in Applied Physics (2001); 80, 55-81.
Tenne, Richard and Alex K. Zettl. “Nanotubes from Inorganic Materials.” Topics in Applied Physics (2001); 80, 81-112.
Louie, Steven G. “Electronic Properties, Junctions, and Defects of Carbon Nanotubes.” Topics in Applied Physics (2001); 80, 113-145.
Yao, Zhen et al. “Electrical Transport Through Single-Wall Carbon Nanotubes.” Topics in Applied Physics (2001); 80, 147-171.
Odom, Teri Wang et al. “Scanning Probe Microscopy Studies of Carbon Nanotubes.” Topics in Applied Physics ((2001); 80, 173-211.
Saito, Riichiro and Hiromichi Kataura. “Optical Properties and Raman Spectroscopy of Carbon Nanotubes.” Topics in Applied Physics (2001); 80, 213-247.
Fink, Joerg H. and Philippe Lambin. “Electron Spectroscopy Studies of Carbon Nanotubes.” Topics in Applied Physics (2001); 80, 247-272.
Hone, James. “Phonons and Thermal Properties of Carbon Nanotubes.” Topics of Applied Physics (2001); 80, 273-286.
Yakobson, Boris I, And Phaedon Avouris. “Mechanical Properties of Carbon Nanotubes.” Topics in Applied Physics (2001); 80, 287-327.
Forro, Laszlo and Christian Schoenenberger. “Physical Properties of Multi-wall Nanotubes.” Topics in Applied Physics (2001); 80, 329-391.
Ajayan, Pulickel M. and Otto Z. Zhou. “Applications of Carbon Nanotubes.” Topics in Applied Physics (2001); 80, 391-425.
Kong, J. et al. “Synthesis, integration, and electrical properties of individual single-walled carbon nanotubes.” Applied Physics A (1999); 69, 305-308.
Dai, Hongjie et al. “Exploiting the properties of carbon nanotubes for nanolithography.” Applied Physics Letters (Sep. 14, 1998); 73, 1508-1510.
Soh, Hyongsok T. et al. “Integrated nanotube circuits.” Applied Physics Letters (Aug. 2, 1999); 75, 627-629.
Bozler, C.O., et al., “Fabrication and Microwave Performance of the Permeable Base Transistor,” IEEE Tech. Dig. Int. Electron Devices Meeting (1979) 384.
Cheng, H. M. et al. “Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrcarbons.” Applied Physics Letters (Jun. 22, 1998); 72, 3282-3284.
Shim, Moonsub et al. “Polymer Functionalization for Air-Stable n-Type Carbon Nanotube Field-Effect Transistors.” Journal of American Chemical Society (2001); 123, 11512-11513.
Haddon R. C. “C70 Thin Film Transistors.” Journal of the American Chemical Society (1996); 118, 3041-3042.
Hafner, Jason H. et al. “Direct Growth of Single-Walled Carbon Nanotube Scanning Probe Microscopy Tips.” Journal of the American Chemical Society (1999); 121, 9750-9751.
Hafner, Jason H. et al. “Growth of nanotubes for probe microscopy tips.” Scientific Correspondence (Apr. 29, 1999); 398, 761, 762.
Bekyarova, E. et al. “Oxidation and Porosity Evaluation of Budlike Single-Wall Carbon Nanohorn Aggregates.” American Chemical Society (2002).
Hafner, Jason H. et al. “Catalytic growth of single-wall carbon nanotubes from metal particles.” Chemical Physics Letters (Oct. 30, 1998); 296, 195-202.
Li, Yan et al. “Preparation of Monodispersed Fe-Mo Nanoparticles as the Catalyst for CVD Synthesis of Carbon Nanotubes.” Chemical Material (2001); 13, 1008-1014.
Zhou, Chongwu et al. “Electrical measurements of individual semiconducting single-walled carbon nanotubes of various diameters.” Applied Physics Letters (Mar. 20, 2000); 76, 1597-1599.
Yu, et al., J. Phys. Chem. B, 105:6831-6837 (2001).
Berber, S., Phys. Rev. Lett, 84, 4613 (2000).
Bahr, Jeffrey L. and James. M. Tour. “Highly Functionalized Carbon Nanotubes Using in Situ Generated Diazonium Compounds.” Chemical Materials (2001); 13, 3823-3824.
Peigney, Alain et al. “A Study of the Formation of Single- and Double-Walled Carbon Nanotubes by a CVD Method.” Journal of Physical Chemistry B (2001); 105, 9699-9710.
Yao, B. D. and N. Wang. “Carbon Nanotube Arrays Prepared by MWCVD.” Journal of Physical Chemistry (2001); 105, 11395-11398.
Ago, Hiroki et al. “Gas-Phase Synthesis of Single-wall Carbon Nanotubes from Colloidal Solution of Metal Nanoparticles.” Journal of Physical Chemistry B (Nov. 1, 2001); 105, 10453-10456.
Li, Yiming et al. “Growth of Single-Walled Carbon Nanotubes from Discrete Catalytic Nanoparticles of Various Sizes.” Journal of Physical Chemistry B (2001); 105, 11424-11431.
Ng, Hou Tee et al. “Soft-Lithography-Mediated Chemical Vapor Deposition of Architectured Carbon Nanotube Networks on Elastomeric Polymer.” American Chemical Society (2001).
Derycke, V. et al. “Carbon Nanotube Inter-and Intramolecular Logic Gates.” Nano Letters (Sep. 2001); 1, 453-456.
Erkoc et al., Int. J. Modern Phys. C, 12:865-870 (2001).
Benerjee, Sarbajit and Stanislaus S. Wong. “Functionalization of Carbon Nanotubes with a Metal-Containing Molecular Complex.” Nano Letters (2001); 0, A—E.
Reynoso, J. 391PGA Drawings (3): Project No. 32639103. Kyocera America, Inc. (Apr. 12, 1994).
Diehl, Michael R. et al. “Self-Assembled, Deterministic Carbon Nanotube Wiring Networks.” Angew. Chemical International Edition (2002); 41, 353-356.
Sidorov, S. N. et al. “Cobalt Nanoparticle Formation in the Pores of Hyper-Cross-Linked Polystyrene.” Chemical Materials (1999); 11, 3210-3215.
Brown, David A. et al. “Kinetics of Inron(III) Chelation from Polynuclear Oxo-Hydroxy Aggregates by Hydroxamic Acids.” Inorganic Chemistry (1999); 38, 5198-5202.
Douglas, Trevor and Vistoria T. Stark. “Nanophase Cobalt Oxyhydroxide Mineral Synthesized within the Protein Cage of Ferritin.” Inorganic Chemistry (2000); 39, 1828-1830.
Hatzikonstantinidou et al., Phys. Scripta 54: 226-229 (1994).
Cao, Anyuan et al. “Macroscopic Three-Dimensional Arrays of Fe Nanoparticles Supported in Aligned Carbon Nanotubes.” The Journal of Physical Chemistry B (2001); 105, 11937-11940.
Li, Shoutian et al. “Semiconductor Nanoparticles in Contact: Quenching of the Photoluminescence from Silicon Nanocrystals by WO3 nanoparticles Suspended in Solution.” Journal of Physical Chemistry B (1998); 102, 7319-7322.
Zhang, Shengjun et al. “Select Pathways to Caron Nanotube Film Growth.” Advanced Materials (Dec. 3, 2001); 13, 1767-1770.
Wei, B. Q. et al. “Organized assembly of carbon nanotubes.” Nature (Apr. 4, 2002); 416, 495-496.
Zhao, Y.-P. et al. “Frequency-dependent electrical transport in carbon nanotubes.” Physical Review B (2001); 64, 201402(4).
Zhu, H. W. et al. “Direct Synthesis of Long Single-Walled Carbon Nanotube Strands.” Science (May 3, 2002); 296, 884-886.
Ajayan, P. M. et al. “Nanotubes in a Flash—Ignition and Reconstruction.” Science (Apr. 26, 2002); 296, 705.
Franklin, Nathan R. et al. “Patterned growth of single-walled carbon nanotubes on full 4-inch wafers.” Applied Physics Letters (Dec. 31, 2001); 79, 4571-4573.
Fan, Shoushan et al. “Self-Oriented Regular Arrays of Carbon Nanotubes and Their Field Emission Properties.” Science (Jan. 22, 1999); 283, 512-514.
Sohn, Jung Inn, et al., “Patterned selective growth of carbon nanotubes and large field emission from vertically well-aligned carbon nanotube field emitter arrays.” Appl. Phys. Letters (Feb. 12, 2001); 78, 901-903.
Postma, Henk W. C. et al. “Manipulation and Imaging of Indivdual Single-Walled Carbon Nanotubes with an Atomic Force Microscope.” Advanced Materials (Sep. 1, 2000); 12, 1299-1302.
Chen, J. et al., “Large On-Off Ratios and Negative Differential Resistance in a Molecular Electronic Device,” Science, vol. 286, Nov. 19, 1999, pp. 1550-151.
Collier, C.P., et al., “Electronically Configurable Molecular-Based Logic Gates,” Science, vol. 285, Jul. 16, 1999, pp. 391-394.
“IBM Builds Tiny Transistor that Beats Silicon”, Technology—Reuters, Yahoo, May 16, 2002.
Yao, Z., et al, Phys. Rev. Lett, 84, 2941 (2000).
Tans, Sander J., “Room-temperature transistor based on a single carbon nanotube,” Nature, May 1998, vol. 393, pp. 49-52.
Dillon, Anne C., “A Simple and Complete Purification of Single-Walled Carbon Nanotube Materials,” Advanced Materials, 1999, vol. 11, pp. 1354-1358.
Cleland, A.N., “Single-crystal aluminum nitride nanomechanical resonators,” Applied Physics Letters, Sep. 24, 2001, vol. 79, pp. 2070-2072.
Calleja, M., “Fabrication of Gold Nanowires on Insulating Substrates by Field-Induced Mass Transport,” Applied Physics Letters, Oct. 8, 2001, vol. 79, pp. 2471-2473.
Kluth, P., “Fabrication of epitaxial CoSi2 nanowires,” Applied Physics Letters, Aug. 6, 2001, vol. 79, pp. 824-826.
Zhang, Y., “Formation of metal nanowires on suspended single-walled carbon nanotubes,” Applied Physics Letters, Nov. 6, 2000, vol. 77, pp. 3015-3017.
Berry, A.D., “Fabrication of GaAs and InAs wires in nanochannel gas,” Applied Physics Letters, Nov. 4, 1996, vol. 69, pp. 2846-2848.
Li, Jian-Long, “Spontaneous formation of ordered indium nanowire array on Si(001),” Applied Physics Letters, Oct. 22, 2001, vol. 79, pp. 2826-2828.
Jorritsma, J., “Fabrication of large arrays of metallic nanowires on V-grooved substrates,” Applied Physics Letters, Sep. 4, 1995, vol. 67, pp. 1489-1491.
Sekiba, Daiichiro, “Fabrication of stable nanopatterns on metal,” Applied Physics Letters, Sep. 30, 2002, vol. 81, pp. 2632-2634.
Yin, A. J., “Fabrication of highly ordered metallic nanowire arrays by electrodeposition,” Applied Physics Letters, Aug. 31, 2001, vol. 79, pp. 1039-1041.
He, J. Z., “Dispersion, refinement, and manipulation of single silicon nanowires,” Applied Physics Letters, Mar. 11, 2002, vol. 80, pp. 1812-1814.
Franklin, Nathan R., “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Applied Physics Letters, Jul. 29, 2002, vol. 81, pp. 913-915.
Homma, Yoshikazu, “Growth of suspended carbon nanotube networks on 100-nm-scale silicon pillars,” Applied Physics Letters, Sep. 16, 2002, vol. 81, pp. 2261-2263.
Yenilmez, Erhan, “Wafer scale production of carbon nanotube scanning probe tips for atomic force microscopy,” Applied Physics Letters, Mar. 25, 2002, vol. 80, pp. 2225-2227.
Sax, Herald, “Polysilicon Overfill Etch Back Using Wet Chemical Spin-Process Technology,” 7 pages.
Dinaro, Joanna, “Analysis of an Elementary Reaction Mechanism for Benzene Oxidation in Supercritical Water, Combustion Institute,” 2000, vol. 28, pp. 1529-1536.
Monthioux, M., “Sensitivity of single-wall carbon nanotubes to chemical processing: an electron microscopy investigation,” Carbon, 2001, vol. 39, pp. 1251-1272.
Hou, P. X., “Multi-step purification of carbon nanotubes,” 2002 Elsevier Science Ltd., Mar. 8, 2001, vol. 40, pp. 81-85.
Zheng, Bo, “Efficient CVD Growth of Single-Walled Carbon Nanotubes on Surfaces Using Carbon Monoxide Precursor,”Nano Letters, 2002, pp. A-D.
O'Connell, Michael J., “Reversible water-solubilization of single-walled carbon nanotubes by polymer wrapping,” Chemical Physics Letters, 2001, vol. 342, pp. 265-271.
Huang, Houjin, “Purification and alignment of arc-synthesis single-walled carbon nanotube bundles, ” Chemical Physics Letter, 2002, vol. 356, pp. 567-572.
Kong, Jing, “Chemical vapor deposition of methane for single-walled carbon nanotubes,” Chemical Physics Letters, 1998, vol. 292, pp. 567-574.
Bergbreiter, David E., “Using Soluble Polymers To Recover Catalysts and Ligands,” Chemical Reviews, Mar. 5, 2002, pp. A-AM.
Roucoux, Alain, “Reduced Transition Metal Colloids: A Novel Family of Reusable Catalysts?,” Chemical Reviews, Jan. 30, 2002, pp. A-V.
Yoshida, Jun-ichi, “Tag Strategy for Separation and Recovery,” Chemical Reviews, Mar. 18, 2002, pp. A-X.
De Vos, Dirk E., “Ordered Mesoporous and Microporous Molecular Sieves Functionalized with Transition Metal Complexes as Catalysts for Selective Organic Transformation,” Chemical Reviews, Jan. 31, 2002, pp. A-Z.
Connelly, Neil G., “Chemical Redox Agents for Organometallic Chemistry,” Chemical Reviews, Jan. 9, 1996, vol. 96, pp. 877-910.
Dequesnes, Marc, “Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches,” Nanotechnology, Jan. 22, 2002, vol. 13, pp. 120-131.
Serp, Philippe, “Chemical Vapor Deposition Methods for the Controlled Preparation of Supported Catalytic Materials,” Chemical Reviews, Apr. 10, 2002, pp. A-AR.
Diehl, Michael R., “Self-Assembled, Deterministic Carbon Nanotube Wiring Networks,” Angew. Chem. Int. Ed., 200 vol. 41, pp. 353-356.
Wind, S.J., “Localized and Directed Lateral Growth of Carbon Nanotubes from a Porous Template,” IBM T.J. Watson Research Center, 17 pgs.
Wind, S.J., “Fabrication and Electrical Characterization of Top Gate Single-Wall Carbon Nanotube Field-Effect Transistors,” IBM T. J. Watson Research Center, 14 pgs.
Harutyunyan, Avetik R., “CVD Synthesis of Single Wall Carbon Nanotubes under “Soft” Conditions,” Nano Letters, Feb. 25, 2002, pp. A-F.
Massot, L., “Electrodeposition of carbon films from molten alkaline fluoride media,” Electrochimica Acta, Jan. 28, 2002, vol. 47, pp. 1949-1957.
Heinze, S., “Carbon Nanotubes as Schottky Barrier Transistors,” Physical Review Letters, Sep. 2, 2002, vol. 89, pp. 106801-1 through 106801-4.
Duan, Xiangfeng, “Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices,” Nature, Jan. 4, 2001, vol. 409, pp. 66-69.
Chen, Robert J., “Noncovalent Sidewall Functionalization of Single-Walled Carbon Nanotubes for Protein Immobilization,” J. Amer. Chem. Soc., 2001, vol. 123, pp. 3838-3839.
Puntes, Victor F., “Synthesis of hcp-Co Nanodisks,” J. Amer. Chem. Soc., 2002, vol. 124, pp. 12874-12880.
An, Lei, “Synthesis of Nearly Uniform Single-Walled Carbon Nanotubes Using Identical Metal-Containing Molecular Nanoclusters as Catalysts,” j.Amer. Chem. Soc., 2002, total of 4 pgs.
Cassell, Alan M., “Directed Growth of Free-Standing Single-Walled Carbon Nanotubes,” American Chemical Society, Jun. 21, 1999, vol. 121, pp. 7975-7976.
Bahr, Jeffrey L., “Functionalization of Carbon Nanotubes by Electrochemical Reduction of Aryl Diazonium Salts: A Bucky Paper Electrode,” American Chemical Society, 2001, vol. 123, pp. 6536-6542.
Fruchart, O., “Vertical self-organization of epitaxial magnetic nanostructures,” Journal of Magnetism and Magnetic Materials, 2002, vol. 239, pp. 224-227.
Zhang, J., “Fabrication and photoluminescene of ordered GaN nanowire arrays,” Journal of Chemical Physics, Oct. 1, 2001, vol. 115, pp. 5714-5717.
Dubois, S., “Fabrication and properties of arrays of superconducting nanowires,” Journal of Materials Research Mar. 1999, vol. 14, pp. 665-671.
Liu, Z.Q., “Synthesis of α-SiO2 nanowires using Au nanoparticle catalysts of a silicon substrate,” Journal of Materials Research, Mar. 2001, vol. 16, pp. 683-686.
Lei, Y, Fabrication, characterization, and photoluminescence properties of highly ordered TiO2 nanowire arrays, J. Material Research, Apr. 2001, vol. 16, pp. 1138-1144.
Li, Y., “Fabrication of Highly ordered ZnO nanowire arrays in anodic alumina membranes,” J. Materials Research, Nov. 2000, vol. 15, p. 2305-2308.
Sellmyer, D.J., “Magnetism of Fe, Co and Ni nanowires in self-assembled arrays,” J. of Physics: Condensed Matter, (2000) vol. 13, pp. R433-R460.
Blick, R.H., “Nanostructural silicon for studying fundamental aspects of nanomechanics,” J. of Physics: Condensed Matter, (2002), pp. R905-R945.
Ciraci, S., “Quantum effects in electrical and thermal transport through nanowires,” J. of Physics: Condensed Matter, (2001), pp. R537-R568.
Yu, Jae-Young, “Silicon Nanowires: Preparation, Device, Fabrication, and Transport Properties,” J. Phys. Chem. B 2000, vol. 104, pp. 11864-11870.
Yu, Zhonghua, “(n, m) Structural Assignments and Chirality Dependence in Single-Wall Carbon Nanotube Raman Scattering,” J. Phys. Chem. B 2001, vol. 105, pp. 6831-6837.
Wang, Y.W., “Fabrication of Ordered Ferromagnetic-Nonmagnetic Alloy Nanowire Arrays and their Magnetic Property Dependence of Annealing Temperature,” J. Phys. Chem. B 2002, vol. 106, pp. 2502-2507.
Murphy, Robert, “High-Yield, Nandestructive Purification and Quantification Method for Multiwalled Carbon Nanotubes,” J. Phys. Chem. B 2002, vol. 106, pp. 3087-3091.
Li, C.P., “Silicon Nanowires Wrapped with Au Film,” J. Phys. Chem. B 2002, vol. 106, pp. 6980-6984.
Steuerman, David W., “Interactions between Conjugated Polymers and Single-Walled Carbon Nanotubes,” J. Phys. Chem. B 2002, vol. 106, pp. 3124-3130.
Li, Jun, “Novel Three-Dimensional Electrodes: Electrochemical Properties of Carbon Nanotube Ensembles,” J. Phys. Chem. B 2002, pp. A-G.
Cassell, Alan M., “Large Scale CVD Synthesis of Single-Walled Carbor Nanotubes,” J. Phys. Chem. B 1999, vol. 103, pp. 6484-6492.
Chiang, I.W., “Purification and Characterization of Single-Wall Carbon Nanotubes (SWNTs) Obtained from the Gas-Phase Decomposition of CO (HiPco Process),” J. Phys. Chem. B. 2001, vol. 105, pp. 8297-8301.
Tulchinsky, D.A., “Fabrication and domain imaging of iron magnetic nanowire arrays,” J. Vac. Sci. Technol., May/Jun. 1998, A 16(3), pp. 1817-1819.
Yun, Wan Soo, “Fabrication of metal nanowire using carbon nanotube as a mask,” J. Vac. Sci. Technol., Jul./Aug. 2000, A 18(4), pp. 1329-1332.
Batra, Inder P., “Quantum transport through one-dimensional aluminum wires,” J. Vac. Sci. Technol., May/Jun. 2002, B 20(3), pp. 812—817.
Tsutsumi, Toshiyuki, “Fabrication technology of ultrafine SiO2 masks and Si nanowires using oxidation of vertical sidewalls of a poly-Si layer,” J. Vac. Sci Technol., Jan./Feb. 1999, B 17(1), pp. 77-81.
Namatsu, Hideo, “Fabrication of one-dimensional nanowire structures utilizing crystallographic orientation in silicon and their conductance characteristics,” J. Vac. Sci. Technol., Sep./Oct. 1997, B 15(5), pp. 1688-1696.
Namatsu, Hideo, “Fabrication of thickness-controlled silicon nanowires and their characteristics,” J. Vac. Sci. Technol., Nov./Dec. 1995, B 13(6), pp. 2166-2169.
Cassell, Alan M., “Combinatorial Optimization of Heterogeneous Catalysts Used in the Growth of Carbon Nanotubes,” Langmuir 2001, vol. 17, pp. 260-264.
Lewenstein, Justin C. High-Yield Selective Placement of Carbon Nanotubes on Pre-Patterned Electrodes, Nano Letters., 2002, vol. 2, No. 5, pp. 443-446.
Martino, Anthony, “Catalyst Testing of Highly Dispersed Metal Nanoparticles for Coal Liquefaction and Coal/Waste Copressing,” Catalysis and Chemical Technologies Department, Sandia National Laboratories, pp. 1-7.
Peng, X.S., “Electrochemical fabrication of ordered Ag2S nanowire arrays,” Materials Research Bulletin, 2002, No. 37, pp. 1369-1375.
Robinson, L.A. W., “Self-aligned electrodes for suspended carbon nanotube structures,” Microelectronics Research Centre, Cavendish Laboratory, University of Cambridge and Hitachi Cambridge Laboratory, pp. 1-2.
Moore, Gordon E., “Cramming more components into integrated circuits,” Electronics, Apr. 19, 1965, vol. 38, No. 8(4), 4 pgs.
Fan, Hongyou, “Multiphased assembly of nanoporous silica particles,” Journal of Non-Crystalline Solids (2001) vol. 285, pp. 71-78.
Franklin, Nathan R., “Integration of suspended carbon nanotube arrays into electronic devices and electromechanical systems,” Applied Physics Letters, Jul. 29, 2002, vol. 81, No. 5, 913-915.
Kong, Jing, “Synthesis of individual single-walled carbon nanotubes on patterned silicon wafers,” Nature, Oct. 29, 1998, vol. 395, pp. 878-881.
Duan, Xiangfeng, “Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires,” Nano Letters, 2002, pp. A-D.
Fuhrer, M.S., “High-Mobility Nanotube Transistor Memory,” Nano Letters, 2002, vol. 2, No. 7, pp. 755-759.
Radosavljević, M.,“Nonvolatile Molecular Memory Elements Based on Ambipolar Nanotube Field Effect Transitors,” Nano Letters, 2002, vol. 2, pp. 761-764.
Derycke, V., “Catalyst-Free Growth of Ordered Single-Walled Carbon Nanotube Networks,” Nano Letters, 2002, pp. A-D.
Joselevich, Ernesto, “Vectorial Growth of Metallic and Semiconducting Single-Wall Carbon Nanotubes,” Nano Letters, xxxx, vol. 0, pp. A-E.
Javey, Ali, “Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators,” Nano Letters, 2002, pp. A-D.
Robertson, John, “Section 11. Non-Crystalline Carbon, Properties and Prospects for Non-Crystalline Carbons,” Journal of Non-Crystalline Solids 299-302, 2002, pp. 798-804.
Ci, Lijie, “Double Wall Carbon Nanotubes Promoted by Sulfur in a Floating Iron Catalyst CVD System,” Chemical Physics Letters 359, Jun. 13, 2002, pp. 63-67.
Gromov, A., “Purification of Carbon Nanotubes,” Caramel Workshop, Jan. 23, 2002, pp. 1-13.
Cui, Yi, “Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks,” Science, Feb. 2, 2001, vol. 291, pp. 851-853.
Wang, Suhua, Thermal Oxidation of Cu2S Nanowires: a Template method for the Fabrication of Mesoscopic Cu×O (× = 1,2) Wires, Phys. Chem. Chem. Phys., 2002, vol. 4, pp. 3425-3429.
Untiedt, C., “Fabrication and Characterization of Metallic Nanowires,” Physical Review B, Jul. 15, 1997, vol. 56, No. 4, pp. 2154-2160.
Marsen, Bjorn, “Fullerene-Structured Nanowires of Silicon,” Physical Review B, Oct. 15, 1999, vol. 60, No. 16, pp. 11593-11600.
Berber, Savas, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Physical Review Letters, May 15, 2000, vol. 84, No. 20, pp. 4613-4616.
Yao, Zhen, “High-Field Electrical Transport in a Single-Wall Carbon Nanotubes,” Physical Review Letters, Mar. 27, 2000, vol. 84, No. 13, pp. 2641-2944.
Zhang, Y.F., “Liquid Phase Synethesis of Carbon Nanotubes,” Physica B 323, 2002, pp. 293-295.
Dresselhaus, M.S., “Raman Spectroscopy on One Isolated Carbon Nanotube,” Physica B 323, 2002, pp. 15-20.
Heinze, S., “Carbon Nanotubes as Schottky Barrier Transistors,” Physical Review Letters, Sep. 2, 2002, vol. 89, No. 10, 106801-1—106801-4.
Fu, Qiang, “Electrodeposition of Carbon Films from Various Organic Liquids,” Surface & Coatings Technology 124, 2000, pp. 196-200.
Hernadi, K., “Reactivity of Different Kinds of Carbon During Oxidative Purification of Catalytically Prepared Carbon Nanotubes,”, Solid State Ionics 141-142, 2001, pp. 203-209.
Colomer, J. F., “Different Purification Methods of Carbon Nanotubes Produced by Catalytic Synthesis,” Synthetic Metals 103, 1999, pp. 2482-2483.
Dalton, A.B., “A Functional Conjugated Polymer to Process, Purify and Selectively Interact with Single Wall Carbon Nanotubes,” Synthetic Metals 121, 2001, pp. 1217-1218.
Tat, Kerk Wai, “Preparation and Characterization of Cobalt/Silica Core-Shell Magnetic Nanoparticles,” Dept. Chem., National University of Singapore 2000/2001, pp. 1-5.
Shipley, Microposit® XP-90104A E-Beam Resist, Preliminary Product Information, pp. 1-2.
Smalley, R. E., Foreword (Publication unknown), Jan. 2001.
Dresslhaus, Mildred S., Preface (Publication unknown) Jan. 2001.
Advanced Semiconductor Engineering, Inc., Substrate Design 420L BGA 35*35, Dwg. No. K-I-0420, 2 pages.
Integrated Device Technology, Inc., DA Package Design, Sep. 25, 1997, 2 pages.
Integrated Device Technology, Inc. BG Package Outline, Feb. 18, 1994.
Pimenta, M.A., “Diameter dependence of the Raman D-band in isolated single-wall carbon nanotubes,” Physical Review B, vol. 64 pp. 04140-1-04140-4.
Duan, Xiangfeng, Nonvolatile Memory and Programmable Logic from Molecule-Gated Nanowires, Nano Letters, Mar. 2002, pp. 1-4.
Introduction and Historical Perspective , Chapter 1, pp. 1-48.
Modern CMOS Technology, Chapter 2, pp. 49-92.
Crystal Growth, Wafer Fabrication and Basic Properties of Silicon Wafers, Chapter 3, pp. 93-149.
Kong, J., et al., “Chemical Vapor Disposition of Methane for Single-Walled Carbon Nanotubes.” Chemical Physics Letters, 292, 567, 1998.
Colomer, J.-F., et al., “Characterization of Single-Walled Carbon Nanotubes Produced by CCVD Method.” Chemical Physics Letters (2001); 345, 11-17.
Cassell, A., et al., “Large Scale CVD Synthesis of Single-Walled Carbon Nanotubes.” The Journal of Physical Chemistry B (1999); vol. 103, No. 22: 6484-6492.
Cassell, A., et al., “Directed Growth of Free-Standing Single-Walled Carbon Nanotubes.” Journal of the American Chemical Society (1999); vol. 121, 7975-7976.
Delzeit, L., et al., “Multilayered Metal Catalysts for Controlling the Density of Single-walled Carbon Nanotube Growth.” Chemical Physics Letters, 348, 368, 2001.
Wei, Y., et al., “Effect of Catalyst Film Thickness on Carbon Nanotube Growth by Selective Area Chemical Vapor Deposition.” Applied Physics Letters (2001); vol. 78, pp. 1394-1396.
Su., M., et al., “A Scalable CVD Method for the Synthesis of Single-Walled Carbon Nanotubes with High Catalyst Productivity.” Chemical Physics Letters (2000); vol. 322, 231-326.
Harutyunyan, A., et al., “CVD Synthesis of Single Wall Carbon Nanotubes under ‘Soft ’ Conditions.” Nano Letters vol. 2c No. 5 525 (2002); Published on web Mar. 27, 2002.
Li, Q., et al., “High-Density Growth of Single-Wall Carbon Nanotubes on Silicon by Fabrication of Nanosized Catalyst Thin Films.” Chem. Mater. (2002), 14, 4262; Published on web Sep. 11, 2002.
Homma, Y., et al., “Growth of Suspended Carbon Nanotube Networks on 100nm-Scale Silicon Pillars.” Applied Physics Letters. (2002); vol. 81 No. 12, 2261-2263.
Javey, A., et al., “Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators.” Nano Letters (2002); vol. 2 No. 9 929-932. Published on web Jul. 31, 2002.
Kong, J., et al., “Synthesis of Indivdual Single-Walled carbon Nanotubes on Patterned Wafers.” Nature (1998); 395: 878-881.
Chen, B., et al., “Heterogeneous Single-Walled Carbon Nanotube Catalyst Discovery and Optimization.” Chem. Mater. (2002); vol. 14 1891-1896.
Yenilmez, E., et al., “Wafer Scale Production of carbon Nanotube Scanning Probe Tips for Atomic Force Microscopy.” Applied Physics Letters. (2002); vol. 80 No. 12, 2225-2227.
Peigney, A., et al., “A Study of the Formation of Single-and-Double-Walled carbon Nanotubes by a CVD Method.” Journal of Physical Chemistry B (2001); 105: 9699-9710.
Franklin, N., et al., “Integration of Suspended Carbon Nanotube Arrays into Electronic Devices and Electroechanical Systems.” Applied Physics Letters (2002); vol. 81 No. 5, 913-905.
Collins, P., et al., “Engineering Carbon Nanotubes Circuits Using Electrical Breakdown.” Science (2001); 292: 706-709.
Kim, W., et al., “Synthesis of Ultralong and High Percentage of Semiconduction Single-walled Carbon Nanotubes.” Nano Letters (2002); vol. 2 No. 7 703-708. Published on web Jun. 1, 2002.
Liu, et al., “Organizing Single-Walled Carbon Nanotubes on Gold Using a Wet Chemical Self-Assembling Technique, Langmuir,” Apr. 18, 2000, vol. 16, No. 8, 3659-3573.
Zheng et al, “Chemical Vapor Deposition Growth of Well-Aligned Carbon Nanotube Patterns on Cubic Mesoporous Silica Films by Soft Lithography”, Chemistry of Materials, Jun. 9, 2001, vol. 13, 2240-2242.
Huang, et al., “Patterned Growth of Well-Aligned Carbon Nanotubes: A Soft-Lithographic Approach”, The Journal of Physical Chemistry B., Mar. 16, 2000, vol. 104, No. 10, 2193-2196.
Chattopadhyay, et al., “Metal-Assisted Organization of Shortened Carbon Nanotubes in Monolayer and Mulilayer Forest Assemblies”, Journal of the American Chemical Society, Aug. 28, 2001, vol. 123, 9451-9452.
Bonard, J. et al., “Monodisperse Multiwall Carbon Nanotubes Obtained with Ferritin as Catalyst”, Nano Letters, 2002, vol. 2, No. 6, 665-667.
Collins, P., “Engineering Carbon Nanotubes and Nanotube Circuits Using Electrical Breakdown”, Science, vol. 292, Apr. 27, 2001, pp. 706-709.
Homma, Y., “Single-Walled Carbon Nanotube Growth on Silicon Substrates Using Nanoparticle Catalysts”, Jpn. J. Appl. Phys., vol. 41 (2002), pp. L89-L91.
Snow, E.S. et al., “Random Networks of Carbon Nanotubes as an Electronic Material.” Applied Physics Letters, Mar. 31, 2003, vol. 82, No. 13, 2145-2147.
Bernholc et al., “Mechanical and Electrical Properties of Nanotubes”, Annu. Rev. Mater. Res., 32 (2002) 347.
Ramsperger, U., “Fabrication and lateral electronic trasport measurements of gold nanowires,” Applied Physics Letters, Jan. 1, 2001, vol. 78, pp. 85-87.
Legrand, B., “Silicon nanowires with sub 10 nm lateral dimensions: From atomic force microscope lithography based fabrication to electrical measurements,” J. Vac. Sci. Technol., May/Jun. 2002, B 20(3), pp. 862-870.
Ajayan, P.M., et al., “Nanometre-Size Tubes of Carbon”, Rep. Prog. Phys. 60 (1997) 1025-1062.
Avouris, P., “Carbon nanotube electronics,” Carbon, 2002, vol. 40, pp. 429-445.
Chen, Bin, “Heterogeneous Single-Walled Carbon Nanotube Catalyst Discovery and Optimization,” Chemical Materials, Dec. 7, 2001, vol. 14, pp. 1891-1896.
Maurin, I., “Carbon Miscibility in the Boron Layers of the MgB2 Superconductor,” Chemical Materials, 2002, pp. A-D.
Hyeon-Lee, Jingyu, “Aero-Sol-Gel Synthesis of Nanostructured Silica Powders,” Chemical Materials, 1997, vol. 9, pp. 2400-2403.
McEuen, Paul L., Single-Walled Carbon Nanotube Electronics, to be published in the inaugural issue of the IEEE Transactions on Nanotechnology (2002), 9 pgs.
Dürkop, T., “Nanotubes are High Mobility Semiconductors,” Department of Physics, University of Maryland, 4 pgs.
Choi, Hee Cheul, “Spontaneous Reduction of Metal Ions on the Sidewalls of Carbon Nanotubes,” J. Amer. Chem. Soc., May 7, 2002, pp. A-B.
Deng, S. Z., “Synthesis of silicon carbide nanowires in a catalyst-assisted process,” Chemical Physics Letters, Apr. 26, 2002, vol. 356, pp. 511-514.
Zhang, R. Q., “Silicon nanotubes: Why not?,” Chemical Physics Letters, 2002, vol. 364, pp. 251-258.
Lei, Y., “Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3,” Chemical Physics Letters, 2001, vol. 338, pp. 231-236.