Join
today

Boliven PRO is more than just patent search

  • Build and save lists using the powerful Lists feature
  • Analyze and download your search results
  • Share patent search results with your clients

Patents »

US7618606: Separation of carbon dioxide (CO2) from gas mixtures

Share

Filing Information

Inventor(s) Liang-Shih Fan · Himanshu Gupta · Mahesh V. Iyer ·
Assignee(s) The Ohio State University ·
Attorney/Agent(s) Standley Law Group LLP ·
Primary Examiner Edward M Johnson ·
Application Number US11255099
Filing date 10/20/2005
Issue date 11/17/2009
Prior Publication Data
Predicted expiration date 12/16/2024
Patent term adjustment 679
U.S. Classifications 423/230  · 423/220  ·
International Classifications B01D5304  ·
Kind CodeB2
Related U.S. Application DataRELATED APPLICATION DATA
This application is a continuation-in-part of and claims the priority benefit of U.S. patent application Ser. No. 10/359,763 Feb. 6, 2003 now U.S. Pat. No. 7,067,456, which is hereby incorporated herein by reference.
20 Claims, 38 Drawings


Abstract

A reaction-based process has been developed for the selective removal of carbon dioxide from a multicomponent gas mixture. The proposed process effects the separation of CO2 from a mixture of gases by its reaction with metal oxides. The Calcium based Reaction Separation for CO2 process consists of contacting a CO2 laden gas with calcium oxide in a reactor such that CaO captures the CO2 by the formation of calcium carbonate. Once “spent”, CaCO3 is regenerated by its calcination leading to the formation of fresh CaO sorbent. The “regenerated” CaO is then recycled for the further capture of more CO2. This process also identifies the application of a mesoporous CaCO3 structure, that attains >90% conversion over multiple carbonation and calcination cycles. Lastly, thermal regeneration (calcination) under vacuum provided a better sorbent structure that maintained reproducible reactivity levels over multiple cycles.

Independent Claims | See all claims (20)

  1. 1. A method for separating carbon dioxide from a flow of gas comprising carbon dioxide, said method comprising the steps of: directing said flow of gas to a gas-solid contact reactor, said gas-solid contact reactor containing at least one mesoporous sorbent, said at least one mesoporous sorbent comprising at least one metal oxide; reacting said carbon dioxide with said at least one sorbent so as to remove said carbon dioxide from said flow of gas at a temperature of about 600° C. to about 700° C., thereby converting said at least one mesoporous sorbent into spent sorbent; calcining said spent sorbent so as to liberate said carbon dioxide from said spent sorbent, thereby regenerating said mesoporous sorbent; and repeating the aforementioned steps.
  2. 10. A method for separating carbon dioxide from a flow of gas comprising carbon dioxide, said method comprising the steps of: directing said flow of gas to a first gas-solid contact reactor, said first gas-solid contact reactor containing at least one sorbent, said sorbent comprising calcined modified mesorporous preciritated calcium carbonate; reacting said carbon dioxide in said flow of gas on said sorbent in said first gas-solid contact reactor so as to remove said carbon dioxide from said flow of gas at a temperature of about 600° C. to about 700° C.; directing said flow of gas to a second gas-solid contact reactor when said sorbent in said first gas-solid contact reactor is spent thereby forming spent sorbent, said second gas-solid contact reactor containing at least one sorbent, said sorbent comprising calcined modified mesoporous preciritated calcium carbonate; reacting said carbon dioxide in said flow of gas on said sorbent in said second gas-solid contact reactor so as to remove said carbon dioxide from said flow of gas at a temperature of about 600° C. to about 700° C.; calcining said spent sorbent from said first gas-solid contact reactor so as to generate carbon dioxide and to regenerate said sorbent; directing said flow of gas to said first gas-solid contact reactor when said sorbent in said second gas-solid contact reactor is spent, thereby forming spent sorbent; and calcining said spent sorbent from said second gas-solid contact reactor so as to generate carbon dioxide and to regenerate said sorbent.
  3. 20. A method of separating carbon dioxide from a flow of gas comprising carbon dioxide, said method comprising the steps of: calcining a modified Precipitated Calcium carbonate so as to produce a mesoporous sorbent; directing said flow of gas into contact with said sorbent, said sorbent at a temperature of about 600° C. to about 700° C.; reacting said carbon dioxide with said sorbent so as to remove said carbon dioxide from said flow of gas, thereby converting said sorbent into a spent sorbent; calcining said sorbent so as to liberate said carbon dioxide from said spent sorbent, thereby regenerating said sorbent; and repeating the aforementioned steps.

References Cited

U.S. Patent Documents

Document NumberAssigneesInventorsIssue/Pub Date
US1798802 DOHERTY RES CO Niles Mar 1931
US3194732 IRENE NEUHAUSER Neuhauser Jul 1965
US3749380 BABCOCK & WILCOX CO Strom et al. Jul 1973
US3864450 TORAY INDUSTRIES Takeyama et al. Feb 1975
US4081522 The United States of America as represented by the United States Department of Energy Hubble et al. Mar 1978
US4088736 Institut Francais du Petrole Courty et al. May 1978
US4115518 Unibra Delmon et al. Sep 1978
US4174373 Ltd. Hitachi Yoshida et al. Nov 1979
US4212854 Matsushita Electric Industrial Co., Ltd. Maki et al. Jul 1980
US4215096 Calgon Corporation Sinha et al. Jul 1980
US4226839 The United States of America as represented by the Administrator of the U.S. Environmental Protection Agency O'Neill et al. Oct 1980
US4312280 The United States of America as represented by the United States Department of Energy Shearer et al. Jan 1982
US4409124* Chevron Research Company Robinson et al. Oct 1983
US4433981* Shell Oil Company Slaugh et al. Feb 1984
US4442078 The United States of America as represented by the United States Department of Energy Jalan et al. Apr 1984
US4442221* Chevron Research Company Bishop et al. Apr 1984
US4533532 Rheinisch-Westfallisches Elektrizitatswerk Aktiengesellschaft Gebhard et al. Aug 1985
US4544542 Dorr-Oliver Incorporated Angevine et al. Oct 1985
US4613487 Conoco Inc. Yoon et al. Sep 1986
US4729889 California Institute of Technology Flytani-Stephanopoulos et al. Mar 1988
US4748010 Chemstar, Inc. Walker May 1988
US4772455 Toho Belson Co., Ltd. Izumi et al. Sep 1988
US4855276 Purafil, Inc. Osborne et al. Aug 1989
US4871522 The Babcock & Wilcox Company Doyle Oct 1989
US4937059 Phillips Petroleum Company Kolts et al. Jun 1990
US4950409 STANFORTH ROBERT R Stanforth Aug 1990
US5053238 The Regents of the University of California Zeidler et al. Oct 1991
US5078973 Babcoco-Hitachi Kabushiki Kaisha Kuroda et al. Jan 1992
US5084256 Electric Power Research Institute, Inc. McElroy et al. Jan 1992
US5087597 Armada de la Republica de Venezuela Leal et al. Feb 1992
US5130106 UOP Koves et al. Jul 1992
US5160715 Board of Trustees operating Michigan State University Pinnavaia et al. Nov 1992
US5186914 The Social Welfare Foundation Hokkaido Rehability Yoshihiro et al. Feb 1993
US5232793 Ishikawajima-Harima Heavy Industries Co., Ltd. Miyauchi et al. Aug 1993
US5275739 Westinghouse Electric Corp. Grant et al. Jan 1994
US5334564 Board of Trustees operating Michigan State University Pinnavaia et al. Aug 1994
US5492676 Matsushita Electric Industrial Co., Ltd. Katatani et al. Feb 1996
US5520894 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Heesink et al. May 1996
US5525317 The Babcock & Wilcox Company Bhat et al. Jun 1996
US5585081 The Babcock & Wilcox Company Chu et al. Dec 1996
US5653785 Agency of Industrial Science & Technology, Ministry of International Trade & Industry Horio et al. Aug 1997
US5779464 The Ohio State University Research Foundation Fan et al. Jul 1998
US5895634 Mitsubishi Heavy Industries, Ltd. Mitsuoka et al. Apr 1999
US5902561 D.D.I. Limited Carrea et al. May 1999
US5939118 Cox et al. Aug 1999
US6224839 The Ohio State University Fan et al. May 2001
US6309996 The Ohio State University Fan et al. Oct 2001
US6358554 Yoshihide Hagiwara Hagiwara et al. Mar 2002
US6569388 The Ohio State University Research Foundation Fan et al. May 2003
US6669917 General Electric Co. Lyon Dec 2003
US6682838 Texaco Inc. Stevens Jan 2004
US6692545 General Motors Corporation Gittleman et al. Feb 2004
US6723230 ExxonMobil Research & Engineering Company Chen et al. Apr 2004
US6737031 Alstom Power NV Beal et al. May 2004
US6790430 The Regents of the University of California Lackner et al. Sep 2004
US6834623 Cheng Dec 2004
US6880635 Shell Oil Company Vinegar et al. Apr 2005
US6911057 General Electric Company Lyon Jun 2005
US7008967 Sasol Technology (Proprietary) Limited Keyser et al. Mar 2006
US7067456 The Ohio State University Fan et al. Jun 2006
US20020197199 The Ohio State University Fan et al. Dec 2002
US20030007918 The Ohio State University Fan et al. Jan 2003
US20030113239 Pahlman et al. Jun 2003
US20030224932 Saaski et al. Dec 2003
US20040237404 ALSTOM (Switzerland) Ltd Andrus, Jr. et al. Dec 2004
US20040261617 Stewart Dec 2004
US20050042166 Kindig et al. Feb 2005
US20050175533 Thomas et al. Aug 2005
US20050197411 Chevron U.S.A. Inc. Lowe et al. Sep 2005
US20060039853 The Ohio State University Research Foundation Fan et al. Feb 2006
US20060177546 HOEHNE MYRNA R Hoehne Aug 2006
US20060211571 IYER MAHESH V Iyer et al. Sep 2006

Foreign Patent Documents

Document NumberAssigneesInventorsIssue/Pub Date
CA2401279UNIV OHIOAug 2001
DE3335499MOULIJN JACOB AApr 1985
DE3512169BERGWERKSVERBAND GMBHOct 1986
DE265559Mar 1989
EP0467526SAKAI CHEMICAL INDUSTRY CO., LTD.,Jan 1992
EP1251948THE OHIO STATE UNIVERSITYOct 2002
EP1332783Hamilton Sundstrand CorporationAug 2003
JP4984956Aug 1974
JP5952516Mar 1984
JP63171623Jul 1988
JP1015353Jan 1998
KR20020040234BAEK KWANG MINERAL PRODCTS COMay 2002
WO199725138Jul 1997
WO199956868Nov 1999
WO200108785THE OHIO STATE UNIVERSITY RESEARCH FOUNDATIONFeb 2001
WO200156689THE OHIO STATE UNIVERSITYAug 2001
WO200174491MACNEIL, Joseph, HermanOct 2001
WO2006099599THE OHIO STATE UNIVERSITYSep 2006
WO2007082089THE OHIO STATE UNIVERSITYJul 2007
WO2008039783THE OHIO STATE UNIVERSITYApr 2008
* cited by examiner

Other Publications

Agnihotri et al., Influence of Surface Modifiers on the Structure of Precipitated Calcium Carbonate, Ind. Eng. Chem. Res. 1999, 38, pp. 2283-2291.
Barker, “The Reversibility of the Reaction CaCO3 ⇄ CaO+CO2”, J. appl. Chem. Biotechnol. 1973, 23, pp. 733-742.
Barker, “The Reactivity of Calcium Oxide Towards Carbon Dioxide and Its Use fro Every Storage”, J. appl. Chem. Biotechnol. 1974, 24, pp. 221-227.
Bhatia et al., “Effect of the Poduct Layer on the Kinetics of the CO2-Lime Reaction”, AlChE Journal, vol. 29, No. 1, Jan. 1983, pp. 79-86.
Blauwhoff et al., “A Study on the Reaction Between CO2 and Alkanolamines in Aqueous Solutions”, Chemical Engineering Science, vol. 39, No. 2, 1984, pp. 207-225.
Borgwardt, “Sintering of Nascent Calcium Oxide”, Chemical Engineering Science, vol. 44, No. 1, 1989, pp. 53-60.
Bortz et al. “Recent IFRF Fundamental and Pilot Scale Studies on the Direct Sorbent Injection Process”, International Flame Research Foundation, 1985, pp. 17-1-17-22.
Bruce et al., “Comparative SO2 Reactivity of CaO Derived from CaCO3 and Ca(OH)2”, AlChE Journal, vol. 35, No. 1, Jan. 1989, pp. 37-41.
Butt et al., “Kinetics of Thermal Dehydroxylation and Carbonation of Magnesium Hydroxide”, J. Am. Ceram. Soc., vol. 79, No. 7, 1996, pp. 1892-1898.
Dedman et al., “Calcium Cyanamide Synthesis”, Explosives Research and Development Establishment, Ministry of Aviation, Mar. 1962, pp. 2027-2035.
Fernández et al., “Kinetic study of carbonation of MgO slurries”, Hydrometallurgy 53, 1999, pp. 155-167.
Ghosh-Dastidar et al. “Selenium Capture Using Sorbent Powders: Mechanisms of Sorption by Hydrated Lime”, Sep. 11, 1995.
Ghosh-Dastidar, et al. “Ultrafast Calcination and Sintering of Ca(OH)2 Powder: Experimental & Modeling”, Chemical Engineering Science, vol. 50, No. 13, 1995, pp. 2029-2040.
Gullett et al., “Pore Distribution Changes of Calcium-Based Sorbents Reacting with Sulfur Dioxide”, AlChE Journal, vol. 33, No. 10, pp. 1719-1726.
Gupta et al., “NOx Reduction By Carbonaceaous Materials and CO2 Separation Using Regenerative Metal Oxides From Fossil Fuel”, Dissertation, The Ohio State University, cataloged Oct. 1, 2001, 75 pages.
Gupta et al., “Carbonation-Calcination Cycle Using High Reactivity Calcium Oxide for Carbon Dioxide Separation From Flue Gas”, Ind. Eng. Chem. Res. 2002, 41, pp. 4035-4042.
Herzog et al., “CO2 Capture, Reuse, and Storage Technologies for Mitigating Global Climate Change” A White Paper Final Report, Energy Laboratory, Jan. 1997, 70 pages.
Kaplan, “Cost-saving process recovers CO2 from power-plant fluegas”, Chemical Engineering, Nov. 1982, pp. 30-31.
Kato et al., “Utilization of High Temperature Heat From Nuclear Reactor Using Inorganic Chemical Heat Pump”, Progress in Nuclear Energy, vol. 32, No. 3/4, 1998, pp. 563-570.
Kato et al., “Kinetic feasibility of a chemical heat pump for heat utilization of high-temperature processes”, Applied Thermal Engineering 19, 1999, pp. 239-254.
Keeling, “Atmospheric CO2 concentrations (ppmv) derived from in situ air samples collected at Mauna Loa Observatory, Hawaii”, http://cdiac.esd.ornl.gov/ftp/maunaloa-co2/maunaloa.co2, Jul. 25, 2003, 2 pages.
Kikkinides et al., “Concentration and Recovery Of CO2 from Flue Gas by Pressure Swing Adsorption”, Ind. Eng. Chem. Res. 1993, 32, pp. 2714-2720.
Kirchgessner et al., “Lignosulfonate-Modified Calcium Hydroxide for Sulfur Dioxide Control”, Ind. Eng. Chem. Res. 1987, 26, pp. 2397-2400.
Kirchgessner et al., “Enhancement of Reactivity in Surfactant-Modified Sorbents for Sulfurdioxide Control”, Ind. Eng. Chem. Res. 1989, 28, pp. 413-418.
Mahuli et al., “Pore-Structure Optimization of Calcium Carbonate for Enhanced Sulfation”, 1997, 13 pages.
Mess et al., “Product Layer Diffusion during the Reaction of Calcium Oxide with Carbon Dioxide”, Energy & Fuels 1999, 13, pp. 999-1005.
Milne et al., “High-Temperature, Short-Time Sulfation of Calcium-Based Sorbents”, Ind. Eng. Chem. Res. 1990, 29, pp. 2201-2214.
Mimura et al., “Development of Energy Saving Technology for Flue Gas Carbon Dioxide Recovery in Power Plant by Chemical Absorption Method and Steam System”, Energy Convers. Mgmt., vol. 38, Suppl., 1997, pp. S57-S62.
Pauley et al., “N-ReN Recovers CO2 From flue gas economically,” Technology Oil and Gas Journal, May 1984, 87-92.
Raghunathan et al., “A technique for the study of ultrafast gas-solid reactions for residence times less than 100 ms”, Rev. Sci. Instrum. 63(11), Nov. 1992, pp. 5469-5471.
Sawada et al., “Thermal analysis of basic zinc carbonate.” Part 1. Carbonation process of zinc oxide powders at 8 and 13° C., Thermochimica Acta 273, 1996, pp. 95-102.
Shaheen et al., “Effect of thermal treatment on physicochemical properties of pure and mixed manganese carbonate and basic copper carbonate”, Thermochimica Acta 322, 1998, pp. 117-128.
Tinkler et al., “Towards a Coal-Capable Solid Oxide Fuel Cell System”, Proceedings of the 26th International Technical Conference on Coal Utilization and Fuel Systems, Clearwater, Florida, Mar. 5-8, 2001, pp. 569-570.
Wei et al., “High Surface Area Calcium Carbonate: Pore Structural Properties and Sulfation Characteristics”, Ind. Eng. Chem. Res. 1997, 36, pp. 2141-2148.
Abanades, J.C., “The maximum capture efficiency of CO2 using a carbonation/calcinations cycle of CaO/CaCO3”, Chemical Engineering Journal, 90, 2002, pp. 303-306.
Abanades, J.C. et al., “Conversion Limits in the Reaction of CO2 with Lime”, Energy and Fuels, 17(2), 2003, pp. 308-315.
Adánez, J. et al., “Regeneration of Sulfided Dolomite with Steam and Carbon Dioxide”, Energy & Fuels, 15(1), 2001, pp. 85-94.
Agnihotri, R. et al., “Sorbent/Ash Reactivation for Enhanced SO2 Capture Using a Novel Carbonation Technique”, Ind. Eng. Chem. Res., 38(3), 1999, pp. 812-819.
Al-Shawabkeh et al., Enhanced SO2 Abatement with Water-Hydrated Dolomitic Particles, AlChE Journal, 43(1), Jan. 1997, 173-179.
Balasubramanian, B. et al., “Hydrogen from methane in a single-step process”, Chemical Engineering Science, 54, 1999, pp. 3534-3552.
Beruto, D. et al., “Calcium oxides of high reactivity”, Nature, 263, Sep. 16, 1976, pp. 221-222.
Beruto, D. et al., “Characterization of the Porous CaO Particles Formed by Decomposition of CaCO3 and Ca(OH) 2 in Vacuum”, Journal of The American Ceramic Society, 63(7/8), 1980, pp. 439-443.
Bhatia, S.K. et al., “The Effect of Pore Structure on Fluid-Solid Reactions: Application to the SO2-Lime Reaction”, AlChE Journal, 27(2), Mar. 1981, pp. 226-234.
Biswas, S.C. et al., “Hydrgen Sulphide from Reduced Gypsum”, Fert. Technol., 13(4), 1976, pp. 255-258.
Brooks, M.W. et al., “Recovery of Calcium Carbonate and Hydrogen Sulfide from Waste Calcium Sulfide”, Ind. Eng. Chem. Res., 36(10), 1997, pp. 4236-4242.
Chauk, S.S. et al., “Kinetics of High-Pressure Removal of Hydrogen Sulfide Using Calcium Oxide Powder”, AlChE Journal, 46(6), Jun. 2000, pp. 1157-116.
Couturuer, M.F. et al., “Reactivation of Partially-Sulphated Limestone Particles form a CFB Combustor by Hydration”, The Canadian Journal of Chemical Engineering, 72, Feb. 1994, pp. 91-97.
Dash, S. et al., “Nanocrystalline and metastable phase formation in vacuum thermal decomposition of calcium carbonate”, Thermochimica Acta, 363, 2000, pp. 129-135.
Davis, C. et al., “High value opportunities from the chicken egg”, RIRDC Publication No. 02/094, Aug. 2002, 69 pages.
Davison, R.L. et al., “Trace Elements in Fly Ash”, Environmental Science & Technology, 8(13), Dec. 1974, pp. 1107-1113.
Deshmukh, A.C. et al., “Preservation of Hatchery Waste by Lactic Acid Fermentation. 2. Large Scale Fermentation and Feeding Trial to Evaluate Feeding Value.”, Poultry Science, 76, 1997, pp. 1220-1226.
Dismukes, E.B., “Trace element control in electrostatic precipitators and fabric filters”, Fuel Processing Technology, 39, 1994, pp. 403-416.
Doong, S. et al., “A Novel Membrane Reactor For Direct Hydrogen Production From Coal”, DOE Final Technical Report, http://www.osti.gov/bridge/servlets/purl/876470-v2hbxY/876470.PDF, Jan. 2006, 58 pages.
Fan, L.S. et al., “Clean Coal Technologies: Oscar and Carbonox Commercial Demonstrations”, AlChE Journal, 48(10), Oct. 2002, pp. 2115-2123.
Fenouil, L.A. et al., “Study of Calcium-Based Sorbents for High-Temperature H2S Removal. 1. Kinetics of H2S Sorption by Uncalcined Limestone”, Ind. Eng. Chem. Res., 34(7), 1995, pp. 2324-2333.
Fenouil, L.A. et al., “Study of Calcium-Based Sorbents for High-Temperature H2S Removal. 2. Kinetics of H2S Sorption by Calcined Limestone”, Ind. Eng. Chem. Res., 34(7), 1995, pp. 2334-2342.
Froning, G.W., “Recent Advances in Egg Products Research and Development”, University of California Egg Processing Workshop, Jun. 2-3, 1998, 7 pages.
Froning, G.W. et al., “Research Note: Utilisation of Inedible Eggshells and Technical Egg White Using Extrusion Technology”, Poultry Science, 69, 1990, pp. 2051-2053.
Germani, M.S. et al., “Vapor-Phase Concentrations of Arsenic, Selenium, Bromine, Iodine, and Mercury in the Stack of a Coal-Fired Power Plant”, Environ. Sci. Technol., 22(9), 1988, pp. 1079-1085.
Ghosh-Dastidar, A. et al., “Investigation of High-Reactivity Calcium Carbonate Sorbent for Enhanced SO2 Capture”, Ind. Eng. Chem. Res., 35(2), 1996, pp. 598-606.
Gittins, J. et al., “Utilisation of Egg Shell Waste from UK Egg Processing and Hatchery Establishments”, ADAS report, http://www.defra.gov.uk.foodrin/poultry/utilisation.htm, May 2002, 7 pages.
Gullett, B.K. et al., “Reduction of Coal-Based Metal Emissions by Furnace Sorbent Injection”, Energy and Fuels, 8(5), 1994, pp. 1068-1076.
Gupta, H. et al., “Reactive separation of CO2 using pressure pelletized limestone”, Int. J. Environmental Technology and Management, 4,(1/2), 2004, pp. 3-20.
Gupta, H. et al., The Role of CaO in Maximizing Hydrogen Production from Fossil Fuels, Proceedings from Fuel Cell Seminar, San Antonio, Texas, 2004, 4 pages.
Hajaligol, M.R. et al., “Analysis and Modeling of the Direct Sulfation of CaCo3”, Ind. Eng. Chem. Res., 27(12), 1988, pp. 2203-2210.
Hartman, M. et al., “Reaction of Sulfur Dioxide with Limestone and the Grain Model”, AlChE Journal, 22(3), May 1976, pp. 490-498.
Hartman, M. et al., “Reaction of Sulfur Dioxide with Limestone and the Influence of Pore Structure”, Ind. Eng. Chem., Process Des. Develop, 13(3), 1974, pp. 248-253.
Hartman, M. et al., “Reactions between Calcium Oxide and Flue Gas Containing Sulfur Dioxide at Lower Temperatures”, AlChE Journal, 39(4), Apr. 1993, pp. 615-624.
Herzog, H. et al., “Feasibility, Modeling and Economics of Sequestering Power Plant CO2 Emissions In the Deep Ocean”, Environmental Progress, 10(1), Feb. 1991, pp. 64-74.
Heuchel, M. et al., “Adsorption of Carbon Dioxide and Methane and Their Mixtures on an Activated Carbon: Simulation and Experiment”, Langmuir, 15(25), 1999, pp. 8695-8705.
Ho, T.C. et al., “Lead and Cadmium Capture by Various Sorbents During Fluidized Bed Combustion/Incineration”, Fluidization VIII, International Symposium of the Engineering Foundation, Tours, France, May 14-19, 1995, pp. 899-906.
Ho, T.C. et al., “Metal Behavior and Metal Capture by Sorbents During Fluidized Bed Coal Combustion”, Department of Chemical Engineering, Lamar University, pp. 281-286.
Hufton, J.R. et al., “Sorption-Enhanced Reaction Process for Hydrogen Production”, AlChE Journal, 45(2), Feb. 1999, pp. 248-256.
Ida, J.I. et al., “Mechanism of High-Temperature CO2 Sorption on Lithium Zirconate”, Environ. Sci. Technol., 37(9), 2003, pp. 1999-2004.
Iyer, M.V. et al., “Multicyclic Study on the Simultaneous Carbonation and Sulfation of High Reactivity CaO”, Ind. Eng. Chem. Res., 43(14), 2004, pp. 3939-3947.
Iyer, M. et al., “Novel Calcium-based Reactive Separation of CO2 from Flue Gas: Effect of SO2”, Presented at the 20th Annual International Pittsburgh Coal Conference, Pittsburgh, PA, Paper S-1, 2003, pp. 1-11.
Jadhav, R.A. et al., “Mechanism of Selenium Sorption by Activated Carbon”, The Canadian Journal of Chemical Engineering, 78, Feb. 2000, pp. 168-174.
Jia, C.Q. et al., “A kinetic study of the generation of hydrogen sulphide from aqueous calcium sulphide slurry with carbon dioxide”, Waste Process. Recycl. Min. Metall. Ind., Proc. Int. Symp., 1992, pp. 215-227.
Jozewicz, W. et al., “Fly Ash Recycle in Dry Scrubbing”, Environmental Progress, 5(4), Nov. 1986, pp. 219-224.
Jozewicz, W. et al., “Reaction Mechanisms of Dry Ca-Based Sorbents with Gaseous HCI”, Ind. Eng. Chem. Res., 34(2), 1995, pp. 607-612.
Jozewicz, W. et al., “Reactivation of Solids from Furnace Injections of Limestone for SO2 Control”, Environ. Sci. Technol., 21(7), 1987, pp. 664-670.
Kato, M. et al., “Carbon dioxide absorption by lithium orthosilicate in a wide range of temperature and carbon dioxide concentrations”, Journal of materials Science Letters, 21, 2002, pp. 485-487.
Keairns, D.L. et al., “Sulfur Emission Control With Limestone/Dolomite In Advanced Fossil Fuel-Processing Systems”, Environmental Aspects of Fuel Conversion Technology, St. Louis, MO, 1974; Research Triangle Institute: Research Triangle Park, NC, 1974, pp. 135-146.
Khan, T. et al., “Improving Limestone Utilization in Circulating Fluidized Bed Combustors Through the Reactivation and Recycle of Partially Utilized Limestone in the Ash”, Fluidized Bed Combustion, 2, ASME, 1995, pp. 831-840.
Li, G.G. et al., “CO2 reaction with Ca(OH)2 during SO2 removal with convective pass sorbent injection and high temperature filtration”, Environ Eng Policy, 2, 2000, pp. 47-56.
Lin, S.Y. et al., “Developing an innovative method, HyPr-RING, to Product Hydrogen from hydrocarbons”, Energy Conversion and Management, 43, 2002, pp. 1283-1290.
Lin, S. et al., “Process analysis for hydrogen production by reaction integrated novel gasification (HyPr-RING)”, Energy Conversion and Management, 46, 2005, pp. 869-880.
Mahuli, S. et al., “Mechanism of Arsenic Sorption by Hydrated Lime”, Environ. Sci. Technol., 31(11), 1997, pp. 3226-3231.
Markowski, G.R. et al., “Trace Element Concentration as a Function of Particle Size in Fly Ash from a Pulverized Coal Utility Boiler”, Env. Sci. Tech., 19(9), 1985, pp. 796-804.
Martinez, J.C. et al., Reactivation of Fly Ash and Ca(OH)2 Mixtures for SO2 Removal of Flue Gas, Ind. Eng. Chem. Res., 30(9), 1991, pp. 2143-2147.
Marquis, D.L., “Reactivation of Spent CFB Limestone by Hydration”, Master of Science in Engineering Thesis, The University of New Brunswick, Fredericton, NB, Sep. 1992, 179 pages.
Newsome, D.S., “The Water-Gas Shift Reaction”, Catal. Rev. Sci. Eng., 21(2), 1980, pp. 275-318.
Nishev, T. et al., “Kinetics of Carbonization of Calcium Sulfide in Water Suspension”, J. Chem. Tech. Biotechnol., 56, 1993, pp. 271-272.
Oakeson, W.G. et al., “Effect of CO2 Pressure on the Reaction with CaO”, Journal of The American Ceramic Society, 62(11-12), 1979, pp. 556-558.
Ondov, J.M. et al., “Emissions and Particle-Size Distributions of Minor and Trace Elements at Two Western Coal-Fired Power Plants Equipped with Cold-Side Electrostatic Precipitators”, Environmental Science & Technology, 13(8), Aug. 1979, pp. 946-953.
Ortiz, L.A. et al., “Hydrogen Production Using Sorption Enhanced Reaction”, Ind. Eng. Chem. Res., 40(23), 2001, pp. 5102-5109.
Qiu, K. et al., “Oxidation behaviour of desulphurization residues from gasification and fuel-rich combustion”, Fuel, 78, 1999, pp. 225-231.
Rao, A.B. et al., “A Technical, Economic, and Environmental Assessment of Amine-Based CO2 Capture Technology for Power Plant Greenhouse Gas Control”, Environ. Sci. Technol., 36(20), 2002, pp. 4467-4475.
Reimer, P. et al., “CO2 Capture from Power Generation”, IEA Greenhouse Gas R&D Programme, Cheltenham, Gloucester, U.K., www.ieagreen.org.uk, 2001, 2 pages.
Roark, S.E. et al., “Hydrogen Separation Membranes For Vision 21 Energy Plants”, Proceedings of the International Technical Conference on Coal Utilization & Fuel Systems, 27(1), 2002, 11 pages.
Rosen, M.A. et al., “Comparative Efficiency Assessments for a Range of Hydrogen Production Processes”, Int. J. Hydrogen Energy, 23(8), 1998, pp. 653-659.
Rosen, M.A. et al., “Thermodynamic Comparison of Hydrogen Production Processes”, Int. J. Hydrogen Energy, 21 (5), 1996, pp. 349-365.
Ruth, L.A. et al., “Developing Regenerable SO2 Sorbents for Fluidized Bed Coal Combustion Using Thermogravimetric Analysis”, Thermochimica Acta, 26, 1978, pp. 241-255.
Sasaoka, E. et al., “Novel Preparation Method of Macroporous Lime from Limestone for High-Temperature Desulfurization”, Ind. Eng. Chem. Res., 36(9), 1997, pp. 3639-3646.
Schubert, H., “Grudlagen des Agglomerierens”, Chem.-Ing.-Tech., 51(4), 1979, pp. 266-277.
Shearer, J.A. et al., “Hydration Enhanced Sulfation of Limestone and Dolomite in the Fluidized-Bed Combustion of Coal”, Journal of the Air Pollution Control Association, 30(6), Jun. 1980, pp. 684-688.
Simbeck, D.R., “CO2 Mitigation Economics for Existing Coal-fired Power Plants”, First National Conference on Carbon Sequestration, Washington DC, May 14-17, 2001, pp. 1-12.
Snow, M.J.H. et al., “Direct Sulfation of Calcium Carbonate”, Ind. Eng. Chem. Res., 27(2), 1988, pp. 268-273.
Song, J.H. et al., “Solubility of Carbon Dioxide in Monoethanolamine + Ethylene Glycol + Water and Monoethanolamine + Poly(ethylene glycol) + Water”, J. Chem. Eng. Data, 41(3), 1996, pp. 497-499.
Stiegel, G.J. et al., “Hydrogen from coal gasification: An economical pathway to a sustainable energy future”, International Journal of Coal Geology, 65, 2006, pp. 173-190.
Tacon, A.G.J., “Utilisation of Chick Hatchery Waste: The Nutritional Characterizes of Day Old Chicks and Egg Shells”, Agricultural Wastes, 4, 1982, 335-343.
Thurnau, R.C. et al., “The Behavior of Arsenic in a Rotary Kiln Incinerator”, Air Waste Manage. Assoc., 42(2), 1992, pp. 179-184.
Tsuchiai, H. et al., “Highly Active Absorbent for SO2 Removal Prepared from Coal Fly Ash”, Ind. Eng. Chem. Res., 34(4), 1995, pp. 1404-1411.
Tullin, C. et al., “Direct Sulfation of CaCO3: The Influence of CO2 Partial Pressure”, Energy & Fuels, 7(4), 1993, pp. 512-519.
Tullin, C. et al., “Reaction between Calcium Carbonate and Sulfur Dioxide”, Energy & Fuels, 3(3) 1989, pp. 284-287.
Uberoi, M. et al., “High-Temperature Removal of Cadmium Compounds Using Solid Sorbents”, Environ. Sci. Technol., 25(7), 1991, pp. 1285-1289.
Uberoi, M. et al., “Sorbents for Removal of Lead Compounds from Hot Flue Gases”, AlChE Journal, 36(2), 1990, pp. 307-309.
U.S. Department of Energy, “Carbon Sequestration R & D Program Plan: FY 1999—FY 2000”, Office of Fossil Energy, Federal Energy Technology Center, www.fetc.doe.gov, Jun. 1999, 28 pages.
Vincent Corporation, Tampa Florida, press release, www.vincentcorp.com, Issue 77, May 19, 1998, 1 page.
White, C.M. et al., “Separation and Capture of CO2 from Large Stationary Sources and Sequestration in Geological Formations-Coalbeds and Deep Saline Aquifers”, J. Air & Waste Manage. Assoc., 53, 2003, pp. 645-715.
Wouterlood, H.J. et al., “Removal and Recovery of Arsenious Oxide from Flue Gases”, Environmental Science & Technology, 13(1), Jan. 1979, pp. 93-97.
Wu, B. et al., “Multi-Functional Sorbents for the Removal of Sulfur and metallic Contaminants from High Temperature Gases”, Environ. Sci. Technol., 29, 1995, pp. 1660-1665.
Wu, S. et al., “Effect of Pore-Size Distribution of Lime on the Reactivity for the Removal of SO2 in the Presence of High-Concentration CO2 at High Temperature”, Ind. Eng. Chem. Res., 41(22), 2002, pp. 5455-5458.
Zhang, Z. et al., “Separation of Nitrogen-Carbon Dioxide Mixture by Rapid Pressure Swing Adsorption”, Adsorption, 4, 1998, pp. 173-177.
Ziock, H.J. et al., “Zero Emission Coal Power, a New Concept”, http://www.netl.doe.gov/publications/proceedings/01/carbon—seq/2b2.pdf, 9 pages.
Abanades, J.C. et al., “Capture of CO2 from Combustion Gases in a Fluidized Bed of CaO”, AlChE Journal, 50(7), Jul. 2004, pp. 1614-1622.
Abanades, J.C. et al., “Sorbent Cost and Performance in CO2 Capture Systems”, Ind. Eng. Chem. Res., 43(13), 2004, pp. 3462-3466.
Denton, L. et al., “Simultaneous Production of High-Purity Hydrogen and Sequestration-Ready CO2 From Syngas”, GE Final Technical Report, Dec. 2003, 108 pages.
Iyer, M. et al., “Calcium Looping process for high temperature high presser hydrogen production with in-situ CO2 and sulfur capture”, National Symposium on Chemical Reaction Engineering, Feb. 2007, 1 page, Houston, Texas.
Iyer, M. et al., “Enhanced Hydrogen Production with in-situ CO2 capture in a Single Stage Reactor”, Proc. 23rd Annu. Int. Pittsburgh Coal Conference, Sep. 2006, 17 pages, Pittsburgh, Pennsylvania.
Li, Y.U. et al., “The effect of the binder on the manufacture of a 5A zeolite monolith”, Powder Technology, 116, 2001, pp. 85-96.
Manovic, V. et al., “Parametric Study on the CO2 Capture Capacity of a CaO-Based Sorbents in Looping Cycles”, Energy & Fuels, 22(3), 2008, 1851-1857.
Manovic, V. et al., “Sequential SO2/CO2 capture enhanced by steam reactivation of a CaO-based sorbent”, Fuel, 87, 2008, pp. 1564-1573.
Manovic, V. et al., “Steam hydration of sorbents from a dual fluidized bed CO2 looping cycle reactor”, Fuel, 87, 2008, pp. 3344-3352.
Manovic, V. et al., “Sulphation and carbonation properties of hydrated sorbents from a fluidized bed CO2 looping cycle reactor”, Fuel, 87, 2008, pp. 2923-2931.
Manovic, V. et al., “Thermal Activation of CaO-Based Sorbent and Self-Reactivation during CO2 Capture Looping Cycles”, Environmental Science & Technology, 42(11), 2008, pp. 4170-4174.
Sun, P. et al., “The Effect of CaO Sintering on Cyclic CO2 Capture in Energy Systems”, Environmental and Energy Engineering, 53(9), Sep. 2007, pp. 2432-2442.
Sun, P. et al., “Removal of CO2 by Calcium-Based Sorbents in the Presence of SO2”, Energy & Fuels, 21(1), 2007, pp. 163-170.
Wang, J. et al., “On the Decay Behavior of the CO2 Absorption Capacity of CaO-Based Sorbents”, Ind. Eng. Chem. Res., 44(3), 2005, pp. 627-629.
Zeman, F., “Effect of steam hydration on performance of lime sorbent for CO2 capture”, International Journal of Greenhouse Gas Control, 2, 2008, pp. 203-209.
Zheng, L. et al., “Comparison of Shell, Texaco, BGL and KRW gasifiers as part of IGCC plant computer simulations”, Energy Conversion and Management, 46, 2005, pp. 1767-1779.

Patent Family

The current document is not in a family.