Boliven PRO is more than just patent search

  • Build and save lists using the powerful Lists feature
  • Analyze and download your search results
  • Share patent search results with your clients

Patents »

US7968087: Gene delivery vectors provided with a tissue tropism for smooth muscle cells, and/or endothelial cells


Filing Information

Inventor(s) Ronald Vogels · Menzo J. E. Havenga · Abraham Bout ·
Assignee(s) Crucell Holland B.V. ·
Attorney/Agent(s) TraskBritt, P.C. ·
Primary Examiner Shin-Lin Chen ·
Application Number US12455086
Filing date 05/28/2009
Issue date 06/28/2011
Prior Publication Data
Predicted expiration date 07/07/2019
U.S. Classifications 424/932.1  · 435/455  · 435/320.1  · 536/237.2  · 424/932  ·
International Classifications A01N6300  · A61K4800  · C07H2104  · C12N1500  · C12N1563  ·
Kind CodeB2
This application is a continuation of U.S. patent application Ser. No. 11/018,669, filed Dec. 20, 2004, now abandoned, which application is a continuation of U.S. patent application Ser. No. 09/444,284, filed Nov. 19, 1999, now U.S. Pat. No. 6,929,946, issued Aug. 16, 2005, which is a continuation-in-part of application Ser. No. 09/348,354, filed Jul. 7, 1999, abandoned, the contents of both of which are incorporated by this reference.
Foreign Priority EP98203921 - 11/20/1998 ·
5 Claims, 23 Drawings


A gene delivery vehicle having been provided with at least a tissue tropism for cells selected from the group of smooth muscle cells, endothelial cells, and/or liver cells. The tissue tropism is generally provided by a virus capsid, such as one comprising protein fragments from at least two different viruses, such as two different adenoviruses, including adenovirus of subgroup C or subgroup B (for example, adenovirus 16). The protein fragments can comprise a tissue tropism-determining fragment of a fiber protein derived from a subgroup B adenovirus. Also, cells for producing such gene delivery vehicles and pharmaceutical compositions containing these gene delivery vehicles are provided. Further, a method is disclosed for delivering nucleic acid to cells such as smooth muscle cells and/or endothelial cells which involves administering to the cells an adenovirus capsid having proteins from at least two different adenoviruses and wherein at least a tissue tropism-determining fragment of a fiber protein is derived from a subgroup B adenovirus. Particular constructs are also disclosed.

Independent Claims | See all claims (5)

  1. 1. A method of delivering a non-adenoviral nucleic acid to a smooth muscle cell, the method comprising: delivering the non-adenoviral nucleic acid to said smooth muscle cell by infecting said smooth muscle cell with a recombinant adenovirus comprising: a fiber of adenovirus 11, 16, 35, or 51; and a non-adenoviral nucleic acid encoding a non-adenoviral polypeptide.
  2. 5. A method of delivering a non-adenoviral nucleic acid to a smooth muscle cell, the method comprising: infecting the smooth muscle cell with an adenovirus comprising: a fiber of adenovirus 16; and a non-adenoviral nucleic acid encoding a non-adenoviral polypeptide, wherein the non-adenoviral polypeptide is selected from the group consisting of an apolipoprotein, a nitric oxide synthase, a herpes simplex virus thymidine kinase, an interleukin-3, an interleukin-1α, an anti-angiogenesis protein, angiostatin, an anti-proliferation protein, a smooth muscle cell anti-migration protein, a vascular endothelial growth factor, a basic fibroblast growth factor, a hypoxia inducible factor 1α, and a Plasminogen Activator Inhibitor, wherein the adenovirus further has an adenoviral genome of an adenovirus of serotype 5, wherein the adenoviral genome is modified by a deletion of at least an E1 gene, so as to deliver said non-adenoviral nucleic acid to the smooth muscle cell.

References Cited

U.S. Patent Documents

Document NumberAssigneesInventorsIssue/Pub Date
US4487829 Massachusetts Institute of Technology Sharp et al. Dec 1984
US4517686 La Jolla Cancer Research Foundation Ruoslahti et al. May 1985
US4578079 La Jolla Cancer Research Foundation Ruoslahti et al. Mar 1986
US4589881 La Jolla Cancer Research Foundation Pierschbacher et al. May 1986
US4593002 Salk Institute Biotechnology/Industrial Associates, Inc. Dulbecco Jun 1986
US4792525 La Jolla Cancer Research Foundation Ruoslahti et al. Dec 1988
US4797368 The United States of America as represented by the Department of Health and Human Services Carter et al. Jan 1989
US4956281 Biogen, Inc. Wallner et al. Sep 1990
US5024939 Genentech, Inc. Gorman Jun 1991
US5096815 Protein Engineering Corporation Ladner et al. Mar 1992
US5166320 University of Connecticut Wu et al. Nov 1992
US5198346 Protein Engineering Corp. Ladner et al. Mar 1993
US5204445 The Scripps Research Institute Plow et al. Apr 1993
US5223394 Biogen, Inc. Wallner Jun 1993
US5223409 Protein Engineering Corp. Ladner et al. Jun 1993
US5240846 The Regents of the University of Michigan Collins et al. Aug 1993
US5246921 The Wistar Institute of Anatomy and Biology Reddy et al. Sep 1993
US5332567 Immunomedics Goldenberg Jul 1994
US5349053 Protein Design Labs, Inc. Landolfi Sep 1994
US5403484 Protein Engineering Corporation Ladner et al. Apr 1995
US5436146 The Trustees of Princeton University Shenk et al. Jul 1995
US5443953 Immunomedics, Inc. Hansen et al. Aug 1995
US5474935 The United States of America as represented by the Department of Health and Human Services Chatterjee et al. Dec 1995
US5521291 Boehringer Ingelheim International, GmbH Curiel et al. May 1996
US5534423 Regents of the University of Michigan Palsson et al. Jul 1996
US5543328 Genetic Therapy, Inc. McClelland et al. Aug 1996
US5547932 Boehringer Ingelheim International GmbH Curiel et al. Aug 1996
US5552311 University of Alabama at Birmingham Research Foundation Sorscher et al. Sep 1996
US5559099 GenVec, Inc. Wickham et al. Sep 1996
US5571698 Protein Engineering Corporation Ladner et al. Nov 1996
US5585254 University of Colorado Foundation, Inc. Maxwell et al. Dec 1996
US5622699 La Jolla Cancer Research Foundation Ruoslahti et al. Apr 1997
US5693509 Boehringer Ingelheim International GmbH Cotten et al. Dec 1997
US5698443 Calydon, Inc. Henderson et al. Dec 1997
US5712136 GenVec, Inc. Wickham et al. Jan 1998
US5731190 GenVec, Inc. Wickham et al. Mar 1998
US5756086 Genetic Therapy, Inc. McClelland et al. May 1998
US5770442 Cornell Research Foundation, Inc. Wickham et al. Jun 1998
US5837511 Cornell Research Foundation, Inc. Falck-Pedersen et al. Nov 1998
US5846782 GenVec, Inc. Wickham et al. Dec 1998
US5849561 Cornell Research Foundation, Inc. Falck-Pedersen Dec 1998
US5856152 The Trustees of the University of Pennsylvania Wilson et al. Jan 1999
US5861290 Goldsmith et al. Jan 1999
US5871726 Calydon, Inc. Henderson et al. Feb 1999
US5871727 UAB Research Foundation Curiel Feb 1999
US5871982 The Trustees of the University of Pennsylvania Wilson et al. Feb 1999
US5877011 Genzyme Corporation Armentano et al. Mar 1999
US5922315 Genetic Therapy, Inc. Roy Jul 1999
US5981275 Genzyme Corporation Armentano et al. Nov 1999
US5994128 IntroGene B.V. Fallaux et al. Nov 1999
US6007806 Transgene S.A. Lathe et al. Dec 1999
US6033908 b.v. IntroGene Bout et al. Mar 2000
US6057155 GenVec, Inc. Wickham et al. May 2000
US6057299 Calydon, Inc. Henderson May 2000
US6100086 Genzyme Corporation Kaplan et al. Aug 2000
US6127525 Cornell Research Foundation, Inc. Crystal et al. Oct 2000
US6287857 Genzyme Corporation O'Riordan et al. Sep 2001
US6306652 IntroGene B.V. Fallaux et al. Oct 2001
US6329190 GenVec, Inc. Wickham et al. Dec 2001
US6358507 Genzyme Corporation Kaplan et al. Mar 2002
US6417168 The Trustees of the University of Pennsylvania Greene et al. Jul 2002
US6455314 GenVec, Inc. Wickham et al. Sep 2002
US6486133 The Wistar Institute of Anatomy and Biology Herlyn et al. Nov 2002
US6492169 Crucell Holland, B.V. Vogels et al. Dec 2002
US6632427 Aventis Pharma S.A. Finiels et al. Oct 2003
US6669942 Aventis Pharma S.A. Perricaudet et al. Dec 2003
US6844192 Wake Forest University Orlando et al. Jan 2005
US6878549 Introgene B.V. Vogels et al. Apr 2005
US6913922 Crucell Holland B.V. Bout et al. Jul 2005
US6974695 Crucell Holland B.V. Vogels et al. Dec 2005
US7270811 Crucell Holland B.V. Bout et al. Sep 2007
US7285265 Crucell Holland B.V. Vogels et al. Oct 2007
US7300657 Crucell Holland B.V. Pau et al. Nov 2007
US7468181 Crucell Holland B.V. Vogels et al. Dec 2008
US7749493 Crucell Holland B.V. Havenga et al. Jul 2010
US7820440 Crucell Holland B.V. Vogels et al. Oct 2010
US20020006395 Perricaudet et al. Jan 2002
US20020028194 Kaplan et al. Mar 2002
US20020052485 Colosi May 2002
US20020122789 Perricaudet et al. Sep 2002
US20030026783 Abina Feb 2003
US20030044383 Henderson et al. Mar 2003
US20030152553 Little et al. Aug 2003
US20050158278 Crucell Holland B.V. Vogels et al. Jul 2005
US20050196384 Crucell Holland B.V. Vogels et al. Sep 2005
US20050232900 Crucell Holland B.V. Vogels et al. Oct 2005
US20050244381 AVENTIS PHARMA S.A. Mallet et al. Nov 2005
US20050265974 Crucell Holland B.V. Pau et al. Dec 2005
US20070010016 McCelland et al. Jan 2007
US20070041946 BOUT ABRAHAM Bout et al. Feb 2007
US20070071726 Crucell Holland B.V. Pau et al. Mar 2007
US20070207461 Crucell Holland B.V. Weggeman et al. Sep 2007
US20080131461 Crucell Holland B.V. Pau et al. Jun 2008
US20080171018 Crucell Holland B.V. Bout et al. Jul 2008
US20080199917 Crucell Holland B.V. Vogels et al. Aug 2008
US20080206837 Crucell Holland B.V. Vogels et al. Aug 2008
US20080220014 Crucell Holland B.V. Pau et al. Sep 2008
US20090017523 Crucell Holland B.V. Weggeman et al. Jan 2009
US20090253207 Crucell Holland B.V. Vogels et al. Oct 2009
US20090285879 Crucell Holland B.V. Pau et al. Nov 2009
US20100015176 Crucell Holland B.V. Vogels et al. Jan 2010
US20100034774 Crucell Holland B.V. Vogels et al. Feb 2010
US20100172928 Crucell Holland B.V. Pau et al. Jul 2010

Foreign Patent Documents

Document NumberAssigneesInventorsIssue/Pub Date
EP0259212TRANSGENE S.A.Mar 1988
EP259212Mar 1988
EP99201545.3May 1999
EP0978566Crucell Holland B.V.Feb 2000
EP1054064Crucell Holland B.V.Oct 2004
EP1550722Crucell Holland B.V.Jun 2007
EP1816204Crucell Holland B.V.Aug 2007
JP2078631Mar 1990
WO199100360Jan 1991
WO199105805May 1991
WO199105871May 1991
WO199202553Feb 1992
WO199213081Aug 1992
WO199303769Mar 1993
WO199306223Apr 1993
WO199307282Apr 1993
WO199307283Apr 1993
WO199408026Apr 1994
WO199410323May 1994
WO199411506May 1994
WO199415644Jul 1994
WO199417832Aug 1994
WO199424299Oct 1994
WO199426915Nov 1994
WO199505201Feb 1995
WO199506745Mar 1995
WO199514785Jun 1995
WO199516037Jun 1995
WO199521259Aug 1995
WO199526412Oct 1995
WO199527071Oct 1995
WO199531187Nov 1995
WO199531566Nov 1995
WO199600326Jan 1996
WO199600790Jan 1996
WO199607739Mar 1996
WO199610087Apr 1996
WO199612030Apr 1996
WO199613597May 1996
WO199613598May 1996
WO199614837May 1996
WO199617073Jun 1996
WO199618740Jun 1996
WO199626281Aug 1996
WO199635798Nov 1996
WO199700326Jan 1997
WO199701358Jan 1997
WO199712986Apr 1997
WO199724453Jul 1997
WO199738723Oct 1997
WO199801563Jan 1998
WO199807865Feb 1998
WO199811221Mar 1998
WO199813499Apr 1998
WO199822609May 1998
WO199832842Jul 1998
WO199840509Sep 1998
WO199846779Oct 1998
WO199846781Oct 1998
WO199849300Nov 1998
WO199850053Nov 1998
WO199853087Nov 1998
WO199932647Jul 1999
WO199955132INTROGENE B.V.Nov 1999
WO199958646Nov 1999
WO200003029INTROGENE B.V.Jan 2000
WO200029573CANJI, INC.May 2000
WO200031285INTROGENE B.V.Jun 2000
WO200052186INTROGENE B.V.Sep 2000
WO200070071INTROGENE B.V.Nov 2000
WO200104334INTROGENE B.V.Jan 2001
WO200183797AVIGEN, INC.Nov 2001
WO200190158CRUCELL HOLLAND B.V.Nov 2001
WO200224730CRUCELL HOLLAND B.V.Mar 2002
WO200227006CRUCELL HOLLAND B.V.Apr 2002

Other Publications

Breidenbach et al., 2004, Human Gene Therapy, vol. 15, p. 509-518.*
Bayo-Puxan et al., 2009, Human Gene Therapy, vol. 20, p. 1214-1221.*
Albiges-Rizo et al., Human Adenovirus Serotype 3 Fiber Protein, Journal of Biological Chemistry, 266(6), 3961-3967 (1991).
Bai et al., Mutations That Alter an Arg-Gly-Asp (RGD) Sequence in the Adenovirus Type 2 Penton Base Protein Abolish Its Cell-Rounding Activity and Delay Virus Reproduction in Flat Cells, Journal of Virology, 67(9), 5198-5205 (1993).
Bailey et al., Phylogenetic Relationships among Adenovirus Serotypes, Virology, 205, 438-452 (1994).
Ball-Goodrich et al., “Parvoviral Target Cell Specificity: Acquisition of Fibrotropism by a Mutant of the Lymphotropic Strain of Minute Virus of Mice Involves Multiple Amino Acid Substitutions within the Capsid,” Virology, 184, 175-186 (1991).
Basler et al., “Sequence of the immunoregulatory early region 3 and flanking sequences of adenovirus type 35,” Gene, 1996, pp. 249-254, vol. 170.
Batra et al., Receptor-mediated gene delivery employing lectin-binding specificity, Gene Therapy, 1, 255-260 (1994).
Boucher et al., J. Clin Invest. Feb. 1999, pp. 441-445, vol. 103.
Boursnell et al., In vitro construction of a recombinant adenovirus Ad2:Ad5, Gene, 13, 311-317 (1981).
Bowie et al., Science, Mar. 1990, pp. 1306-10, vol. 247.
Caillet-Boudin et al., Functional and Structural Effects of an Ala to Val Mutation in the Adenovirus Serotype 2 Fibre, J. Mol. Biol., 217, 477-486 (1991).
Chroboczek et al., The Sequence of the Genome of Adenovirus Type 5 and Its Comparison with the Genome of Adenovirus Type 2, Virology, 186, 280-285 (1992).
Chu et al., “Cell targeting with retroviral vector particles containing antibody-envelope fusion proteins,” Gene Therapy, 1, 292-299 (1994).
Cotten et al., “High-efficiency receptor-mediated delivery of small and large (48 kilobase gene constructs using the endosome-disruption activity of defective or chemically inactivated adenovirus particles,” Proc. Natl. Acad. Sci. USA, 89, 6094-6098 (1992).
Cotten et al., “Transferrin-polycation-mediated introduction of DNA into human leukemic cells: Stimulation by agents that affect the survival of transfected DNA or modulate transferrin receptor levels,” Proc. Natl. Acad. Sci. USA, 87, 4033-4037 (1990).
Crawford-Miksza et al., Adenovirus Serotype Evolution Is Driven by Illegitimate Recombination in the Hypervariable Regions of the Hexon Protein. Virology, 224, 357-367 (1996).
Crawford-Miksza et al., Analysis of 15 Adenovirus Hexon Proteins Reveals the Location and Structure of Seven Hypervariable Regions Containing Serotype-Specific Residues, J. Virol., 70(3), 1836-1844 (1996).
Crompton et al., Expression of a foreign epitope on the surface of the adenovirus hexon, J. Gen. Virol., 75(1), 133-139 (1994).
Crystal, Transfer of Genes to Humans: Early Lessons and Obstacles to Success, Science, 270, 404-410 (1995).
Curiel et al., “Adenovirus enhancement of transferrin-polylysine-mediated gene delivery.” Proc. Natl. Acad. Sci. USA, 88, 8850-8854 (1991).
Curiel et al., “High-Efficiency Gene Transfer Mediated by Adenovirus Coupled to DNA-Polylysine Complexes,” Human Gene Therapy, 3, 147-154 (1992).
De Jong et al., “Adenoviruses from Human Immunodeficiency Virus-Infected Individuals, Including Two Strains That Represent New Candidate Serotypes Ad50 and Ad51 of Species B1 and D, Respectively,” 37(12) Journal of Clinical Microbiology 3940-45, American Society for Microbiology (Dec. 1999).
Defer et al., Human Adenovirus-Host Cell Interactions: Comparative Study with Members of Subgroups B and C, Journal of Virology, 64(8), 3661-3673 (1990).
Deonarain, 1998, Expert Opin. Ther. Pat., vol. 8, pp. 53-69.
Dupuit et al., “Regenerating Cells in Human Airway Surface Epithelium Represent Preferential Targets for Recombinant Adenovirus,” Human Gene Therapy, 6, 1185-1193 (1995).
Eck et al., 1996, Goodman & Gilman's The Pharmacological Basis of Therapeutics, McGraw-Hill, New York, pp. 77-101.
Etienne-Julan et al., “The efficiency of cell targeting by recombinant retroviruses depends on the nature of the receptor and the composition of the artificial cell-virus linker,” Journal of General Virology, 73, 3251-3255 (1992).
Falgout et al., Characterization of Adenovirus Particles Made by Deletion Mutants Lacking the Fiber Gene, Journal of Virology, 62(2), 622-625 (1988).
Flomenberg et al., “Molecular Epidemiology of Adenovirus Type 35 Infections in Immunocompromised Hosts,” The Journal of Infectious Diseases, Jun. 1987, pp. 1127-1134, vol. 155, No. 6.
Flomenberg et al., “Sequence and genetic Organization of Adenovirus Type 35 Early Region 3,” Journal of Virology, Nov. 1988, pp. 4431-4437, vol. 62, No. 11.
Gahery-Segard et al., “Immune response to recombinant Capsid Proteins of Adenovirus in Humans: Antifiber and Anti-Penton Base Antibodies Have a Synergistic Effect on Neutralizing Activity,” Journal of Virology, Mar. 1998, pp. 2388-2397, vol. 72, No. 3.
Gall et al., “Adenovirus type 5 and 7 capsid chimera: Fiber replacement alters receptor tropism without affecting primary immune neutralization epitopes,” 70(4) Journal of Virology 2116-23 (1996).
Gall et al., “Construction and characterization of Hexon-Chimeric Adenoviruses: Specification of adenovirus serotype,” 72(12) Journal of Virology 10260-64 (1998).
Gorecki, 2001, Expert Opin. Emerging Drugs, pp. 187-198, vol. 6, No. 2.
Greber et al., “Stepwise Dismantling of Adenovirus 2 during Entry into Cells,” Cell, 75, 477-486 (1993).
Green et al., Evidence for a repeating cross-β sheet structure in the adenovirus fibre, EMBO Journal, 2(8), 1357-1365 (1983).
Guzman et al., PNAS, pp. 10732-736, vol. 91, 1994.
Hong et al., The Amino Terminus of the Adenovirus Fiber Protein Encodes the Nuclear Localization Signal, Virology, 185(2), 758-767 (1991).
Horvath et al., “Nonpermissivity of Human Peripheral Blood Lymphocytes to Adenovirus Type 2 Infection,” Journal of Virology, 62(1), 341-345 (1988).
Huang et al., “Upregulation of Integrins αvβ3 and αvβ5 on Human Monocytes and T Lymphocytes Facilitates Adenovirus-Mediated Gene Delivery,” Journal of Virology, 69(4), 2257-2263 (1995).
Han et al., “Ligand-directed retroviral targeting of human breast cancer cells,” Proc. Natl. Acad. Sci. USA, 92, 9747-9751 (1995).
Hay et al., 2001, Journal of Vascular Research, vol. 38, pp. 315-323.
Henry et al., Characterization of the Knob Domain of the Adenovirus Type 5 Fiber Protein Expressed in Escherichia coli, Journal of Virology, 68(8), 5239-5246 (1994).
Kang et al., “Molecular Cloning and Physical Mapping of the DNA of Human Adenovirus Type 35,” Acta Microbiologica Hungarica, 1999, pp. 67-75, vol. 36, No. 1.
Karayan et al., Oligomerization of Recombinant Penton Base of Adenovirus Type 2 and Its Assembly with Fiber in Baculovirus-Infected Cells, Virology, 202, 782-795 (1994).
Kass-Eisler et al., “Quantitative determination of adenovirus-mediated gene delivery to rat cardiac myocytes in vitro and in vivo,” Proc. Natl. Acad. Sci. USA, 90, 11498-11502 (1993).
Kaye et al., 1990, Proc. Natl. Acad. Sci. USA, vol. 87, pp. 6922-6926.
Komoriya et al., The Minimal Essential Sequence for a Major Cell Type-specific Adhesion Site (CS1) within the Alternatively Spliced Type III Connecting Segment Domain of Fibronectin Is Leucine-Aspartic Acid-Valine.: Journal of Biological Chemistry, 266(23), 15075-15079 (1991).
Krasnykh et al., “Generation of Recombinant Adenovirus Vectors with modified Fibers for Altering Viral Tropism,” Journal of Virology, Oct. 1996, pp. 6839-3846, vol. 70, No. 10.
Lazarovits et al., J Immunol, 1993, pp. 6482-6489, vol. 151.
Lusky et al., Journal of Virology, 1998, pp. 2022-2032, vol. 72.
Makrides et al., Protein Exp Pur, 1999, pp. 183-202, vol. 17.
Maraveyas et al., “Targeted Immunotherapy—An update with special emphasis on ovarian cancer,” Acta Oncologica, 32(7/8), 741-746 (1993).
Mastrangeli et al., “Sero-Switch” Adenovirus-Mediated In Vivo Gene Transfer: Circumvention of Anti-Adenovirus Humoral Immune Defenses Against Repeat Adenovirus Vector Administration by Changing the Adenovirus Serotype, Human Gene Therapy, 7, 79-87 (1996).
Mastrangeli et al., “In Vivo Gene Transfer to the Lung of Experimental Animals Using a Chimeric Ad5/Ad7 Adenovirus Vector,” Ped. Pulm., Suppl., 12, 230, Abst. No. 180 (1995).
Mathias et al., Multiple Adenovirus Serotypes Use αv Integrins for Infection, Journal of Virology, 68(10), 6811-6814 (1994).
Mautner et al., Recombination in Adenovirus: Analysis of Crossover Sites in Intertypic Overlap Recombinants, Virology, 139, 43-52, (1984).
Mautner et al., Recombination in Adenovirus: DNA Sequence Analysis of Crossover Sites in Intertypic Recombinants. Virology, 131, 1-10(1983).
Mei et al., Virol, 1998, pp. 254-66, vol. 240.
Michael et al., “Binding-incompetent Adenovirus Facilitates Molecular Conjugate-mediated Gene Transfer by the Receptor-mediated Endocytosis Pathway,” Journal of Biological Chemistry. 268(10). 6866-6869 (1993).
Michael et al., Addition of a short peptide ligand to the adenovirus fiber protein, Gene Therapy, 2, 660-668 (1995).
Miller et al., Targeted vectors for gene therapy, FASEB Journal, 9, 190-199 (1995).
National Center for Biotechnology Information website, Taxonomy Browser, (visited May 28, 2008) .
Neda et al., “Chemical Modification of an Ecotropic Murine Leukemia Virus Results in Redirection of Its Target Cell Specificity,” Journal of Biological Chemistry, 266(22), 14143-14146 (1991).
Nemerow et al., Adenovirus entry into host cells: a role for αv integrins, Trends In Cell Biology, 4, 52-55 (1994).
Nemerow et al., The Role of αv Integrins in Adenovirus Infection, Biology of Vitronectins and their Receptors, 177-184 (1993).
Notice of Opposition to a European Patent. Patent No. 1054064, by Cell Genesys Inc., dated Jul. 5, 2005.
Novelli et al., Deletion Analysis of Functional Domains in Baculovirus-Expressed Adenovirus Type 2 Fiber, Virology, 185, 365-376 (1991).
Orkin et al., “Report and Recommendations of the Panel to Assess the NIH Investment in Research on Gene Therapy,” (1995), file:///F|/NIHrec.htm Jan. 4, 2001 1:37 pm.
PCT International Preliminary Examination Report, PCT/EP01/10999, dated Sep. 23, 2002 (11 pages).
PCT International Search Report, International Application No. PCT/EP01/10999, dated Mar. 26, 2002 (6 pages).
PCT International Search Report, PCT/US99/00717, dated Aug. 26, 2000.
Peteranderl et al., “Trimerization of the Heat Shock Transcription Factor by a Triple-Stranded α-Helical Coiled-Coil,” Biochemistry, 31, 12272-12276 (1992).
Pring-Åkerblom et al., Sequence Characterization and Comparison of Human Adenovirus Subgenus B and E Hexons, Virology, 212, 232-36 (1995).
Robbins et al., Pharmacol Ther, 1998, pp. 35-47, vol. 80.
Roberts et al., Three-Dimensional Structure of the Adenovirus Major Coat Protein Hexon, Science, 232, 1148-51 (1986).
Rosenfeld et al., Adenovirus-Mediated Transfer of a recombinant alpha-1-Antitrypsin Gene to the Lung Epithelium in Vivo, Science, Apr. 19, 1991, pp. 431-434, vol. 252.
Roy et al., “Circumvention of Immunity to the Adenovirus major Coat Protein Hexon,” Journal of Virology, Aug. 1998, pp. 6875-6879, vol. 72, No. 8.
Rudinger, Peptide Hormones, Jun. 1976, pp. 1-7.
Russell et al., “Retroviral vectors displaying functional antibody fragments,” Nucleic Acids Research, 21(5), 1081-1085 (1993).
Russell et al., Nat Genet, Apr. 1998, pp. 325-330, vol. 18.
Shang et al., J. Immunol, 1998, pp. 267-274, vol. 160.
Signäs et al., Adenovirus 3 Fiber Polypeptide Gene: Implications for the Structure of the Fiber Protein, Journal of Virology, 53(2), 672-678 (1985).
Silver et al., Interaction of Human Adenovirus Serotype 2 with Human Lymphoid Cells, Virology, 165. 377-387 (1988).
Skolnick et al., TIBTECH, 2000, pp. 34-39, vol. 18.
Stevenson et al., “Human Adenovirus Serotypes 3 and 5 Bind to Two Different Cellular receptors via the Fiber Head Domain,” Journal of Virology, May 1995, pp. 2850-2857, vol. 69, No. 5.
Stevenson et al., “Selective targeting of human cells by a chimeric adenovirus vector containing a modified fiber protein,” 71(6) Journal of Virology, 4782-90 (1997).
Stewart et al., Difference imaging of adenovirus: bridging the resolution gap between X-ray crystallography and electron microscopy, EMBO Journal, 12(7), 2589-2599 (1993).
Stratford-Perricaudet et al., “Evaluation of the Transfer and Expression in Mice of an Enzyme-Encoding Gene Using a Human Adenovirus Vector,” Human Gene Therapy, 1990, pp. 241-256, vol. 1.
Su et al., A genetically Modified Adenoviral Vector Exhibits Enhanced Gene Transfer of Human Smooth Muscle Cells, Journal of Vascular Research, 2001, pp. 471-478, vol. 38.
Verma et al., Gene Therapy—promises, problems and prospects, Nature, 389, 239-42 (1997).
Wadell, G., Molecular Epidemiology of Human Adenoviruses, Curr. Top. Microbiol. Immunol., 110, 191-220 (1984).
Watson et al., An Antigenic Analysis of the Adenovirus Type 2 Fibre Polypeptide, Journal of Virology, 69, 525-535 (1988).
Wickham et al., Integrin αvβ5 Selectively Promotes Adenovirus Mediated Cell Membrane Permeabilization, Journal of Cell Biology, 127(1), 257-264 (1994).
Wickham et al., Integrins αvβ3 and αvβ5 Promote Adenovirus Internalization but Not Virus Attachment, Cell, 73, 309-319 (1993).
Wilson et al., 1999, Adenovirus Vectors in the Development of Gene Therapy, Friedman, T. ed., CSHL Press, Cold Spring Harbor, New York.
Xia et al., Crystal structure of the receptor-binding domain of adenovirus type 5 fiber protein at 1.7 Angstrom resolution. Structure, Dec. 15, 1994, pp. 1259-1270, vol. 2.
Zink et al., Gene Ther Mol Biol. Jan. 2001, pp. 1-24, vol. 6.
U.S. Appl. No. 10/618,526, filed Jul. 11, 2003, Fallaux et al., Packaging Systems for Human Recombinant Adenovirus to Be Used in Gene Therapy.
U.S. Appl. No. 10/644,256, filed Aug. 20, 2003, Jones et al., Efficient Production of IgA in Recombinant Mammalian Cells.
U.S. Appl. No. 11/018,669, filed Dec. 20, 2004, Vogels et al., Gene Delivery Vectors Provided With a Tissue Tropism for Smooth Muscle Cells, and/or Endothelial Cells.
U.S. Appl. No. 11/070,890, filed Mar. 2, 2005, Bout et al., Recombinant Protein Production in Permanent Amniocytic Cells That Comprise Nucleic Acid Encoding Adenovirus E1A and E1B Proteins.
U.S. Appl. No. 11/105,725, filed Apr. 14, 2005, Havenga et al., New Settings for Recombinant Adenoviral-Based Vaccines.
U.S. Appl. No. 11/134,674, filed May 19, 2005, Fallaux et al., Means and Methods for Nucleic Acid Delivery Vehicle Design and Nucleic Acid Transfer.
U.S. Appl. No. 11/140.418, filed May 27, 2005, Vogels et al., Serotype of Adenovirus and Uses Thereof.
U.S. Appl. No. 11/207,626, filed Aug. 18, 2005, Havenga et al., Chimaeric Adenoviruses.
U.S. Appl. No. 11/384,850, filed Mar. 20, 2006, Vogels et al., Packaging Cells for Recombinant Adenovirus.
U.S. Appl. No. 11/586,316, filed Oct. 25, 2006, Bout et al., Serotypes of Adenovirus and Uses Thereof.
U.S. Appl. No. 11/593,280, filed Nov. 6, 2006, Van Berkel et al., Recombinant Production of Mixtures of Antibodies.
U.S. Appl. No. 11/657,202, filed Jan. 24, 2007, Opstelten et al., Methods and Means for Producing Proteins With Predetermined Post-Translational Modifications.
U.S. Appl. No. 11/665,276, filed Apr. 11, 2007, Havenga et al., Improved Adenoviral Vectors and Uses Thereof.
U.S. Appl. No. 11/667,975, filed May 16, 2007, Havenga et al., Multivalent Vaccines Comprising Recombinant Viral Vectors.
U.S. Appl. No. 11/786,409, filed Apr. 11, 2007, Vogels et al., Complementing Cell Lines.
U.S. Appl. No. 11/800,871, filed May 7, 2007, Vogels et al., Means and Methods for the Production of Adenovirus Vectors.
U.S. Appl. No. 11/809,697, filed Jun. 1, 2007, Hateboer et al., Recombinant Protein Production in a Human Cell.
U.S. Appl. No. 11/879,421, filed Jul. 16, 2007, Fallaux et al., Stocks of Replication Deficient Adenovirus.
U.S. Appl. No. 11/888,776, filed Aug. 1, 2007, Opstelten et al., Methods and Means for Producing Proteins With Predetermined Post-Translational Modifications.
U.S. Appl. No. 11/899,572, filed Sep. 5, 2007, Vogels et al., Stable Adenoviral Vectors and Methods for Propagation Thereof.
U.S. Appl. No. 11/900,463, filed Sep. 11, 2007, Fallaux et al., Packaging Systems for Human Recombinant Adenovirus to be Used in Gene Therapy.
U.S. Appl. No. 11/978,043, filed Oct. 25, 2007, Vogels et al., New Settings for Recombinant Adenoviral-Based Vaccines.
U.S. Appl. No. 11/980,222, filed Oct. 29, 2007, Bout et al., Serotypes of Adenovirus and Uses Thereof.
U.S. Appl. No. 12/221,021, filed Jul. 29, 2008, Van Berkel et al., Recombinant Production of Mixtures of Antibodies.
U.S. Appl. No. 12/225,259, filed Sep. 16, 2008, Barouch et al., Recombinant Adenoviruses Based on Serotype 26 and 48, and Use Thereof.
U.S. Appl. No. 12/255,673, filed Sep. 26, 2008, Havenga et al., Compositions Comprising a Recombinant Adenovirus and an Adjuvant.
U.S. Appl. No. 12/291,881, filed Nov. 14, 2008, Havenga et al., Recombinant Protein Production in a Human Cell.
Abrahamsen et al., “Construction of an Adenovirus Type 7a E1A Vector,” Journal of Virology, Nov. 1997, pp. 8946-8951 vol. 71, No. 11.
Anderson, Nature, “Human gene therapy,” Apr. 1998, pp. 25-30, vol. 392.
Athappilly et al., “The Refined Crystal Structure of Hexon, the Major Coat Protein of Adenovirus Type 2, at 2-9 A Resolution,” J. Mol. Biol. (1994) 242, 430-455.
Basler et al., “Subgroup B Adenovirus Type 35 Early Region 3 mRNAs Differ from Those of the Subgroup C Adenoviruses,” Virology 215, 165-177 (1996).
Berendsen, Herman J.C., A Glimpse of the Holy Grail, Science, 1998, vol. 282, pp. 642-643.
Bridge et al., “Adenovirus Early Region 4 and Viral DNA Synthesis,” Virology 193, 794-801 (1993).
Brody et al., “Adenovirus-Mediated in Vivo Gene Transfer,” Annals New York Academy of Sciences, May 31, 1994, pp. 90-100.
Chiu et al., Folding & Design, “Optimizing energy potentials for success in protein tertiary structure prediction,” May 1998, pp. 223-228, vol. 3.
Chroboczek et al., Adenovirus Fiber, Current Topics in Microbiology and Immunology 1995;199 (Pt 1) pp. 163-200.
Crawford-Miksza et al., Strain Variation in Adenovirus Serotypes 4 and 7a Causing Acute Respiratory Disease, Journal of Clinical Microbiology, Apr. 1999, pp. 1107-1112, vol. 37, No. 4.
De Jong et al., “Adenovirus Isolates From Urine of Patients with Acquired Immunodeficiency Syndrome,” The Lancet, Jun. 11, 1983 pp. 1293-1296.
Dijkema et al., “Transformation of Primary Rat Kidney Cells by DNA Fragments of Weakly Oncogenic Adenoviruses,” Journal of Virology, Dec. 1979, p. 943-950.
Douglas et al., Abstract, “Strategies to accomplish targeted gene delivery to muscle cells employing tropism-modified adenoviral vectors” Neuromuscular Disorders, Pergamon Press, GB, vol. 7, Jul. 1997, pp. 284-298, XP002079944 ISSN: 0960-8966.
Fallaux et al., New Helper Cells and Matched Early Region 1-Deleted Adenovirus Vectors Prevent Generation of Replication-Competent Adenoviruses, Human Gene Therapy, Sep. 1, 1998, pp. 1909-1917, vol. 9.
Francki et al., “Classification and Nomenclature of Viruses,” Fifth Report of the International Committee on Taxonomy of Viruses; Virology Division of the International Union of Microbiology Societies, 1991, pp. 140-143, Springer-verlag.
George et al., “Gene therapy progress and prospects: adenoviral vectors,” Gene Therapy (2003) 10, 1135-1141.
Grubb et al., Abstract, Inefficient gene transfer by adenovirus vector to cystic fibrosis airway epithelia of mice and humans, Nature, 371, 802-806 (1994).
Gurunathan et al., American Association of Immunologists, “CD40 Ligand/Trimer DNA Enhances Both Humoral and Cellular Immune Responses and Induces Protective Immunity to Infectious and Tumor Challenge,” 1998, pp. 4563-4571, vol. 161.
He et al., “A simplified system for generating recombinant adenoviruses,” Proc. Natl. Acad. Sci. USA vol. 95, pp. 2509-2514, Mar. 1998.
Hidaka, Chisa, et al., “CAR-dependent and CAR-independent pathways of adenovirus vector-mediated gene transfer and expression in human fibroblasts.” 103(4) The Journal of Clinical Investigation 579-87 (Feb. 1999).
Hierholzer et al., “Adenoviruses from Patients with AIDS: A Plethora of Serotypes and A Description of Five New Serotypes of Subgenus D (Types 43-47),” The Journal Of Infectious Diseases vol. 158, No. 4 Oct. 1988.
Imler et al., “Novel complementation cell lines derived from human lung carcinoma A549 cells support the growth of E1-deleted adenovirus vectors,” Gene Therapy, vol. 3: p. 75-84, 1996.
Jolly, Viral vector systems for gene therapy, 1994, Cancer Gene Therapy, pp. 51-64, vol. 1, No. 1.
Kang et al., “Relationship Of E1 and E3 Regions Of Human Adenovirus 35 To Those Of Human Adenovirus Subgroups A, C And D,” Acta Microbiologica Hungarica 36 (4), pp. 445-457 (1989).
Kmiec, “Gene Therapy,” American Scientist, 1999, vol. 87, pp. 240.
Lattanzi, Laura, et al., “High Efficiency Myogenic Conversion of Human Fibroblasts by Adenoviral Vector-mediated MyoD Gene Transfer,” 101(10) J. Clin. Invest. 2119-28 (May 1998).
Lee et al., “The constitutive expression of the immunomodulatory gp 19k protein in E1-, E3-adenoviral vectors strongly reduces the host cytotoxic T cell response against the vector,” Gene Therapy (1995) 2, 256-262.
Levrero et al., “Defective and nondefective adenovirus vectors for expressing foreign genes in vitro and in vivo,” Gene, 101 (1991) 195-202.
Li et al., “Genetic Relationship between Thirteen Genome Types of Adenovirus 11, 34, and 35 with Different Tropisms,” Intervirology 1991;32:338-350.
Liu et al., Molecular Basis of the inflammatory response to adenovirus vectors. Gene Therapy, 2003 10, 935-40.
Merriam-Webster Dictionary (on line) retrieved from the internet
Nan et al., Development of an Ad7 cosmid system and generation of an Ad7DE1DE3HIVMN env/rev recombinant virus, Gene Therapy, 2003, pp. 326-336. vol. 10.
Ngo et al., The Protein Folding Problem and Tertiary Structure Prediction, “Computational Complexity, Protein Structure Prediction, and the Levinthal Paradox,” 1994, Merz et al. (editors), Birkhauser, Boston, MA, pp. 433 and 492-95.
PCT International Search Report, PCT/NL00/00325 dated Sep. 7, 2000.
Prince, “Gene Transfer: A Review Of Methods And Applications,” Pathology (1998), 30, pp. 335-347.
Ragot et al., Abstract, “Efficient adenovirus-mediated transfer of a human minidystrophin gene to skeletal muscle of mdx mice” Nature, Macmillan Journals Ltd. London, GB, vol. 361, No. 6413, 1993, pp. 647-650, XP002162515 ISSN: 0028-0836.
Rea et al., “Highly efficient transduction of human monocyte-derived dendritic cells with subgroup B fiber-modified adenovirus vectors enhances transgene-encoded antigen presentation to cytotoxic T cells.” Journal Of Immunology. (Apr. 15, 2000) 166 (8) 5236-44.,—Apr. 15, 2001 XP002192775.
Reddy et al., Development of adenovirus serotype 35 as a gene transfer vector, Virology, 2003, pp. 384-393, vol. 311.
Roelvink et al., The Coxsackievirus-Adenovirus Receptor Protein Can Function as a Cellular Attachment Protein for Adenovirus Serotypes from Subgroups A, C, D, E, and F, Journal of Virology, Oct. 1998, P. 7909-7915, vol. 72, No. 10.
Romano, “Gene Transfer in Experimental Medicine,” Drug & News Perspectives, vol. 16, No. 5. 2003, 13 pages.
Russell, “Replicating Vectors for Gene Therapy of Cancer: Risks, Limitations and Prospects,” European Journal of Cancer, 1994, vol. 30A, No. 8, pp. 1165-1171.
Sabourin et al., “The molecular regulation of myogenesis,” (2000) Clin.' Genet. 57(1): 16-25.
Schnurr et al., “Two New Candidate Adenovirus Serotypes,” Intervirology 1993;36:79-83.
Schulick et al., “Established Immunity Precludes Adenovirus-mediated Gene Transfer in Rat Carotid Arteries,” The Journal of Clinical Investigation vol. 99, No. 2, Jan. 1997, 209-219.
Segerman et al.: “Adenovirus types 11p and 35p show high binding efficiencies for committed hematopoietic cell lines and are infective to these cell lines” Journal of Virology, The American Society for Microbiology, US, vol. 74, No. 3, Feb. 2000 (200-02), pp. 1457-1467, XP002161682 ISSN: 0022-538X.
Shayakhmetov et al., “Efficient Gene Transfer into Human CD34+ Cells by a Retargeted Adenovirus Vector,” Journal Of Virology, Mar. 2000, p. 2567-2583.
Stratford-Perricaudet LD et al.: “Widespread Long-Term Gene Transfer To Mouse Skeletal Muscles And Heart” Journal Of Clinical Investigation, New York, NY, US, vol. 90 No. 2, Aug. 1992, ISSN: 0021-9738.
Toogood et al., “The Adenovirus Type 40 Hexon: Sequence, Predicated Structure and Relationship to Other Adenovirus Hexons,” J. gen. Virol (1989), 70, 3203-3214.
Valderrama-Leon et al., “Restriction Endonuclease Mapping of Adenovirus 35, a Type Isolated from Immunocompromised Hosts,” Journal Of Virology, Nov. 1985, p. 647-650.
Vogels et al., Replication-Deficient Human Adenovirus Type 35 Vectors for Gene Transfer and Vaccination: efficient Human Cell Infection and ByPass of Preexisting Adenovirus Immunity, J. Virology, 2003, pp. 8263-8271, vol. 77, No. 15.
Wagner et al., “Coupling of adenovirus to transferring-polylysine/DNA complexes greatly enhances receptor-mediated gene delivery and expression of transfected genes,” Proc. Natl. Acad. Sci. USA, 89, 6099-6103 (1992).
Wickham et al.: “Increased In Vitro and In Vivo Gene Transfer by Adenovirus Vectors Containing Chimeric Fiber Proteins,” Journal of Virology, Nov. 1997, p. 8221-8229.
Xu et al., Approaches to improving the kinetics of adenovirus-delivered genes and gene products, Advanced Drug Delivery Reviews, 2005, pp. 781-802, vol. 57.
Zhong et al.: Abstract, “Recombinant Advenovirus Is An Efficient And Non-Pertubing Genetic Vector For Human Dendritic Cells” European Journal Of Immunology, Weinheim, DE, vol. 29, No. 3, 1999, pp. 964-972, XP000938797 ISSN: 0014-2980.
Graham et al., Characteristics of a Human Cell Line Transformed by DNA from Human Adenovirus Type 5, J. Gen. Virol., 1977, pp. 59-72, vol. 36, Great Britain.
Hehir et al., Molecular Characterization of Replication-Competent Variants of Adenovirus Vectors and Genome Modifications to Prevent Their Occurrence, Journal of Virology, Dec. 1996, pp. 8459-8467, vol. 70, No. 12.
Holterman et al., Novel Replication-Incompetent Vector Derived from Adenovirus Type II (AdII) for Vaccination and Gene Therapy: Low Seroprevalence and Non-Cross-Reactivity with Ad5, Journal of Virology, Dec. 2004, pp. 13207-13215. vol. 78, No. 23.
Lemckert et al., Generation of a novel replication-incompetent adenoviral vector derived from human adenovirus type 49: manufacture on PER.C6 cells, tropism and immunogenicity, Journal of General Virology, 2006, pp. 2891-2899, vol. 87.
Parker et al., Effect of Neutralizing Sera on Factor X-Mediated Adenovirus Serotype 5 Gene Transfer, Journal of Virology, Jan. 2009, pp. 479-483, vol. 83, No. 1.
Schmitz et al., Worldwide Epidemiology of Human Adenovirus Infections, American Journal of Epidemiology, 1982, pp. 455-466, vol. 117, No. 4.
Thomas et al., Progress and Problems with the Use of Viral Vectors for Gene Therapy, Nature Publishing Group, May 2003, pp. 346-358, vol. 4.
* cited by examiner

Referenced By

The current document is not referenced by other documents.

Patent Family

The current document is not in a family.